
1 INTRODUCTION  

Mathematical sketching is a method that can deal 
with very complex problems. It is also very clear 
and introduces the new concept of making hydraulic 
laboratory measurements using images. This method 
can recreate 3D representations of high-speed flow 
surfaces in space and time, using a single 
photograph for each time step. Cameras have 
already been used in laboratories to recreate certain 
physical phenomena, but here an entire surface is 
recreated at each instant to calibrate a 2D model. 
Here we present the mathematical methodology used 
to scan surfaces and its application to a dam-break 
problem. We developed this technique for 
characterizing moving surfaces in order to calibrate 
a 2D Saint-Venant numerical code and evaluate the 
divergence of the model from reality.  

 
2 POINTS, SPACE AND PLANE 

CORRESPONDENCE 

Figure 1 shows that taking a picture is like 
projecting one point in space onto a point 

photograph through a point called the focus (F). This 
projection is determined by fixing a reference point 
in space, knowing the position of the camera plane 
and locating the focus. That is, for each point in 
space, it is possible to determine the corresponding 
pixel of the photograph by noting where the straight 
line defined by the point and the focus intersects 
with the photograph plane. However, it is practically 
impossible and unnecessary to know all of these 
parameters directly. Through projective geometry, 
an application known as camera calibration can 
project the point from the reference in space to the 
coordinates in the photograph (real coordinates or 
pixels) without explicitly needing to know these 
parameters.  

2.1 From space to  the photograph: Direct Linear 
Transformation (DLT) (Abdel-Aziz, 1971 and 
Faugeras 1993) 

¿How can the corresponding point in the photograph 
be obtained for a given point 1 2 3(   )ex x x x=  in space 
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in any reference Re (Figure 1)? If we know the 
equation of the photograph plane 

 :          0,f ax by cz dΠ + + + =  and the coordinates 
of the focus F = ( F1 F2 F3) , then the point to 
be determined in the reference Re is given by the 
intersection of the line 

 :  (   )    (  -  )er x y z F F xλ= +  with the plane 
fΠ (Figure 1). However, in addition to being 

nonlinear in the ex  coordinates, this equation 
depends on parameters that are impossible to define 
directly, i.e. the expression in the reference Re for 
the photograph plane fΠ  and the focus F. We need 
another way to find the projected point in the 
photograph.  

 
Figure 1. Space and photograph reference. 

 
Imagine that, instead of taking a space Re as a 
reference, we take a reference Rc (Figure 2), which 
we will call the camera reference. The axis z of this 
reference is perpendicular to the plane fΠ , with 
origin at the focus F. This reference is located at a 
distance of 1 from the photograph plane (focal 
distance). In these conditions, the straight line r has 
the mathematical expression 
 { } { }Rc Rcr: (x y z)  = (x1 x2 x3)λ  and the plane is 

{ }: 1
cf RzΠ = . Therefore, their intersection is 

{ }
j

Rc
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x3 x3
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. Instead of projecting the point 

( ){ }1 2 3  
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x x x x , a multiple of it, 

( ){ }1 2 3  
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e
R

x x x xµ µ µ µ= , is projected, which is the 

same as projecting ex . This is because both points 
are in the same straight line, { }Rcr = (x1 x2 x3)λ , 

which is perpendicular to the projective plane fΠ . 
Therefore, the intersection with the plane is the same 
for both points.  

Rather than relating points in the space with 
points in the plane, the idea is to relate the lines in 

3  that pass through the origin (F) to points of the 
plane fΠ . Thus, we can relate the direction of the 
straight line { }Rcr = ( 1 2 3)x x xλ , which is the point 

{ }Rc( 1 2 3)x x x  and all of its multiples, with the point 

{ }

1  2  1
3 3

cR

x x
x x

⎛ ⎞
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of the photograph plane.  

 
Figure 2. Camera reference. 

 
We must also project straight lines that are parallel 
to the plane fΠ . To do so, we must construct an 
abstract mathematical object that defines points of 
infinity or improper points. This is the vectorial 
space known as projective plane 2P , which is the 
same as plane fΠ , except for the improper points 
that we cannot see but can manipulate algebraically. 
In 2P , we can use the following homogeneous 
coordinates: if 3( 1 2 3)x x x ∈  with 3 0x ≠ , the 
straight line will be represented by the point 

1

2

1  0x
x

⎡ ⎤
⎢ ⎥
⎣ ⎦

. The improper points are then represented 

by points whose third component is equal to 0 in the 
homogeneous coordinates.  

With the sole aim of grouping all the 
representative elements of 2P  in one element, it is 
common to use the generalized coordinates. This 
consists in eliminating the third coordinate when it is 
1 (that is, when the point is not improper). Then, the 
rest of the coordinates are represented as: 

( ) 1 2
1 2

3 3

  x xX X
x x

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

. Whenever we work with 

improper points, which implies using a plane that is 
parallel to the photograph and passes through the 
focus F, it makes no sense. In such a case, we work 
with the region of 2P  called D , which corresponds 
to the photograph paper and does not contain 
improper points.  

We can identify the generalized coordinates 
( ){ }1 2 2 

fR
X X ∈P  as the point fx  in real coordinates 

in the photo reference. This reference is obtained by 
orthogonally projecting the axes x y−  of the camera 
reference over the plane fΠ (Figure 2). That is, 

( ){ }1 2 2 
f

f R
x X X= ∈R . 



Now we want to work with a reference pR  (pixel 
reference) other than fR , with the origin in the 
upper-left corner of the photograph (see Figure 2), in 
which the points of the photograph are expressed in 
pixels. A new change of reference must therefore be 
added.  

A change of reference in the plane can be written 
in matrix form as 

{ }
{ }

1
11 121

2
21 222 1p
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 (1) 

in which the vector ( )x yt t represents the 

translation of the origin and the matrix ( )ij ij
r  

represents the basis change due to the rotation of the 
axis system. Before performing the transformation in 

2R , it is a good idea to perform another change of 
reference in the projective plane. Thus, in 
homogeneous coordinates, the change takes the form 
of a linear application, 2Φ , of 2P .  
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Hitherto we have seen how to relate points in space 
with those of the photograph if the former are 
expressed in some reference denoted by { }cR  
(camera reference). However, as detailed above, it is 
impossible to have the points in 3R  in that reference 
because they depend on the position of the focus and 
the photograph plane, which cannot be determined 
directly. 

If we have properly selected the points at 
reference { }eR  (Figure 1), and we assume that there 
exists an application that passes the points from 
{ }eR to{ }cR , this is a change of reference in 3R  
similar to (1) but in 3R  instead of 2R .  
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Like (2), it can change the reference in 3R  into a 
linear application from 3P  to 3P . 
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By calling this linear application 1Φ , we can 
define a linear application A from 3P  to 2P . 

The composition 1 2AΦ Φ as a linear application 
M between 3P  and 2P  includes the changes of 
reference and the projection in a strict sense. 
Therefore, this method is called Direct Linear 
Transformation (DLT).  

The linear transformation can be written as  
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in which ( )ij ij
M m= .  

Why does n appear here? It was omitted in the 
previous reasoning. In fact, a change of reference in 

2R is assumed to be a basis change in 2P  in 
homogeneous coordinates. However, changes of this 
sort are determined by just three points in 3R , 
except for proportionality factors. The 3x3 basis-
change matrix 2Φ  gives three points of 3R to 
determine a basis change in homogeneous 
coordinates in 2P . However, four points are needed 
to determine the transformation uniquely. The same 
occurs in a change of reference in 3R . Five points of 

4R are needed to uniquely determine a basis change 
in 3P , but only four points are given: the three 
vectors of the coordinates and the origin. Then, n 
represents the two proportionality factors of the 
basis change that are omitted. . 

Therefore, a projection of a point from 3R  over a 
plane fΠ  is determined by a linear application M of 

3P  in 2P , except for a proportionality factor n. That 
is, the third coordinate of a point in 2P  obtained by 

applying M is not equal to 1. To obtain ( )1 2
p pX X , 

the first two coordinates of the obtained point are 
divided by the third component when changing from 

2P  to 2R . 
Finally, the matrix M can be obtained numerically 

by relating known points in space with points in the 



photograph. This process is known as camera 
calibration.  

2.2 From the photograph to space: the inverse 
process (Hatze, 1988) or (Chen, 1994) 

Once we have obtained the projectivity that connects 
the points in space with the points in the photograph 
through the focus, we can use the inverse process to 
obtain the point we need. However, a given point in 
the photograph plane is not represented by a single 
point in space but by a whole line projected through 
it. We need more information about the position of 
the point to be determined in space – for example, a 
plane that it belongs to.  

Algebraically, the matrix M is not square, and it 
makes no sense to evaluate the inverse, at least not 
without limiting the starting space 3P  to the 
homogenized points of 3R  located in a certain plane. 
Then, the dimension of the arriving and starting 
space equals converting the projectivity in an 
isomorphism between the projective spaces. 

From a practical point of view, it is a good idea to 
request that the points to be surveyed belong to a 
certain known plane. 

Imagine that we know the projection matrix 
transformation M and that the point to be determined 
in 3R , ( )1 2 3x x x , belongs to a known plane 
defined by the equation 1 2 3: 0ax bx cx dΠ + + + = . In 
homogeneous coordinates, the point fx can be 
written as [ ]1 2 1fx X X=  and the plane can be 
written as 

1 2 3 4: 0ax bx cx dxΠ + + + =                               (6) 

The point to be determined is 
[ ] 3

1 2 3 4
ex x x x x= ∈P  anti-image by M of fx  

(in homogeneous coordinates) that fits equation (6). 
Using points fx and ex , the following equation is 
obtained from (5): 

31 1 32 2 33 3 34 4
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1 m x m x m x m x
X m x m x m x m x
X m x m x m x m x

= + + +⎧
⎪ = + + +⎨
⎪ = + + +⎩

 (7) 

 In some way, 4x  plays the role of n in equation (5). 
If 0a ≠ , we can write:  

2 3 4
1
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a

+ +
= −                           (8) 

By substituting the value of (8) in (7), the following 
system is obtained in matrix notation: 
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 (9) 
in which the matrix of (9) is the restriction for Π  of 
M, which is square, and it is possible to find the 
points 2 3 4,  and x x x  ( 1x  is defined by the known 
plane Π  through (8)) . To obtain the point ex , the 
homogeneous coordinates ( )1 2 3 4x x x x  are 
divided by 4x  to obtain 1 in the last element or 
coordinate. That is, it is de-homogenized:  

( )
2 3 4

2 3

1 2 3
4

  
e e e

bx cx dx x x
ax x x

x

+ +⎛ ⎞−⎜ ⎟
⎝ ⎠=      (10) 

To sum up, given a point in the photograph 
[ ] 2

1 2
fx X X= ∈ , it is homogenized to obtain 

[ ] 2
1 2 1fx X X= ∈P .  

Then, [ ] 3
1 2 3 4

ex x x x x= ∈P  is calculated using 
equations (8) and (9). Finally, it is de-homogenized 

to obtain ( ) 331 2
1 2 3

4 4 4

  e e e e xx xx x x x
x x x

⎛ ⎞
= = ∈⎜ ⎟

⎝ ⎠
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2.3 Determining the matrix M or projectivity: 
Camera calibration 

In the system of equations (5), the unknowns are the 
parameters of the M matrix ijm . For each point in 

space ( )1 2 3x x x  and its correspondents in the 

photograph ( )1 2X X , two equations (solved for n) 
can be obtained as follows: 

31 1 1 32 2 1 33 3 1 34 1

11 1 12 2 13 3 14

31 1 2 32 2 2 33 3 2 34 2

21 1 22 2 23 3 24

                    0

                   0

m x X m x X m x X m X
m x m x m x m

m x X m x X m x X m X
m x m x m x m

+ + +
− − − − =

+ + +
− − − − =

 (11) 

At first glance, then, it seems that we will need the 
correspondence of at least six points in space and six 
points in the photograph, since there are twelve 
unknowns and each pair of points gives two 
equations.  

Nevertheless, the system defined by (11) is 
homogeneous, and a trivial solution 0ijm =  always 
exists. In fact, the value of n is undetermined 
because it has a value of zero, which makes no 
sense.  



If this parameter n does not exist, we can 
determine the values of ijm  simply by giving four 
points. However, this is not the case. In order to 
solve the problem, we must therefore add a 
restriction to the matrix M.  

Suppose we have the points in space expressed in 
the camera reference used above (Figure 2). In these 
circumstances, the matrix projection M has the 
following form (Faugeras, 1993), (Olagué, 2001):  

0

0

0 u 0
0   0
0 0 1 0

c

f
M f v

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

                   (12) 

where ( )0 0u v  are the coordinates of the centre of 
the photograph (focus projection) in the pixel system 
and f  is the focal (Chen, 1994). This matrix 
corresponds to 2cM = Φ . To work in the reference 

3R , { }eR , M can be composed with the basis change 
1Φ , that is: 

1cM M= ⋅Φ                         (13) 

in which 
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2321 22 2
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r
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 (14) 

is the basis change in 3P  in Equation (4). 
This decomposition makes it possible to find a 

projection matrix M through the intrinsic parameters 
( )cM  and extrinsic parameters ( )1Φ  of the camera. 

The submatrix ( )( )1 i i
rΦ , in which ir  is a row 

vector of a composition of rotations, requires that 
3 1r =  (Pizarro, 2005). From (13), it follows that 

2 2 2
31 32 33 1m m m+ + =                 (15) 

With this restriction, there are now eleven unknowns 
instead of twelve. The new unknown matrix can be 
written as: (Chen, 1994) 
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                       (16) 

By pairing n points in space ( )i i i i
x y z  with n 

points in the photograph ( )i i i
X Y  and applying the 

change of variables to (11), the new system to be 
solved is made up of a system with eleven unknowns 
and 2n equations, as: 

( ) ( )1 2 10 11

0 0 0 . . .1 0

.. . .0 0 0 0 1
i i i i i ii i i

i i i i i i i i i

T T
i i

x X y X z Xx y z
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=

⎛ ⎞
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⎜ ⎟⎜ ⎟
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                                                                                  (17) 

This system is over-determined and can be solved 
using the least-squares method. 

Once the system has been solved, to recover the 
projective matrix M, it follows that:  

1 4

9 12

2 2 2
9 10 11

1
L L

L L

M
L L L

=

⎛ ⎞
⎜ ⎟
⎜ ⎟+ + ⎝ ⎠

   (18) 

thereby undoing the change of variables and 
imposing the restriction (15).  
 
3  EXPERIMENTAL SET-UP 

3.1 Flume dam break  
We studied the changes over time in water-surface 
position (height) caused by suddenly opening the 
gate. The experiment involved high-speed 
movements in the water surface, which were 
recorded with two different digital cameras: a high-
speed Basler camera and a medium-speed Lumenera 
camera. 

  

 
Figure 3. Flume and platform set-up and the positions of 
cameras, with dimensions in cm.  

 
The first experiment was a typical one. A flume 
filled with water was controlled by a sluice gate and 
connected directly to a platform, as shown in Figure 
3. The platform was initially dry. The gate was 
removed manually from its original position and 
water flowed from the flume to the platform. The 
flume used in the first experiment was 9 m long, 40 
cm wide and 60 cm high. It was tilted from 0 to 27º. 



The flume ended at a platform 4 m long, 2.4 m wide 
and 60 cm tall. In this experiment, the effective 
flume length was just 2 m (Figure 3). A fixed 
volume of water was held between two gates about 2 
m apart. This part of the flume was connected to the 
platform by a manual sluice gate. A 50 cm deep 
volume of water was held.  

Between 5 and 10 parallel laser beams were 
placed vertically over the platform, generating lines 
perpendicular to the flume axis in order to obtain 
cross-sections of the water surface. The water was 
mixed with milk at a concentration of 2% so that it 
would reflect the laser beams and make it possible to 
take photographs. Higher concentrations of milk 
caused more reflection, and lower concentrations 
allowed the light to penetrate the mixing fluid to a 
greater degree. We tried out different mixtures and 
found that the minimum concentration of milk was 
about 2% by volume. This allowed us to use as little 
milk as possible and obtain strips of light that were 
not too thick, thus preventing them from 
overlapping.  

The Basler camera can capture images at up to 
1000 fps with a resolution of 1200x1000 pixels or 
more, depending on the frame size. The Basler 
camera used normal Nikon lenses that produce high-
quality images without optical aberration. The 
Lumenera camera had higher luminescence than the 
Basler because its lens had higher luminescence and 
also because the Basler’s minimum shooting 
frequency was higher. The Lumenera had a wide-
angle lens, which caused significant image 
deformation, which had to be corrected. A new 
MATLAB code was produced to correct this 
aberration.  

 
Figure 4. Lasers and general view of the experimental set-up.  
 
A series of photographs of the light reflecting from 
the mixture were taken and processed. The idea was 
to obtain different cross-sections of the surface using 
the laser beams, in order to reconstruct the surface at 
each time step. We could not use many lasers 
because the beams could have overlapped and the 

numerical process would have failed. A minimum 
distance was therefore maintained between lasers.  

3.2 Camera position  
The cameras were placed in such a way that the 
projection of the laser beams in the film did not 
cross at any time. They needed to be able to perceive 
water-level fluctuations accurately. In our 
experiments, the camera angle ranged from 20 to 
30º. The camera distance depended on the area being 
analysed. Neither the distance nor the angle mattered 
because the camera needed to be calibrated and there 
were intrinsic values throughout the process. 

3.3  Camera calibration  
Once the aberration had been corrected, the camera 
needed to be calibrated. As mentioned above, at 
least six points must be identified in the space of 
known coordinates and correlated with six points in 
the photograph in order to determine the M 
projection matrix. As a calibration object, we used a 
meshed box located in a known position (¡Error! 
No se encuentra el origen de la referencia.5). 

The points in the space used to calibrate the 
camera were located throughout the volume of study 
in order to avoid extrapolation problems that would 
increase the estimation error. We used a set of points 
taken from different positions of the meshed object 
in the area of interest. 

3.4 Detection of laser beams  
There are various techniques for finding the pixels 
that belong to a laser beam in a photo. Depending on 
the quality of the photograph, the layout of the laser 
beams, the contrast of the beams, the background of 
the image and other factors, one technique may be 
better than another. All techniques require a pre-
filtering or post-filtering process. Here we present 
two different techniques, detection by maximum and 
morphological image treatment, which we applied to 
two cameras that observed the same experiment 
from different positions. Frontal (Basler) and lateral 
(Lumenera) points of view were used in the 
subsequent analysis, as shown in ¡Error! No se 
encuentra el origen de la referencia.6.  

The frontal view had certain advantages over the 
lateral view. The main advantage lies in the layout of 
the laser beams in the photograph. It was easy to apply 
an intuitive technique to detect the maximum of the 
column of pixels (by colour index), which match up 
with the laser beams.  

The photograph resolution of the Basler camera 
was higher than that of the Lumenera camera. The 
area of study occupied the entire frame area and we 
were able to obtain more information about the 
process. However, in this specific example, the 



frontal view presented a difficulty: the image could 
not describe the high lateral gradients of the flow as 
well as images from the lateral view did. See Figure 
6 to appreciate this problem. 

 
Figure 5. Meshed box used in the calibration procedure. 

 

3.5 Laser-beam detection techniques. Frontal view.  
First, we corrected the photograph by refining it. 
Because the illumination condition was poor, the 
Basler took the photographs with an artificial gain 
that introduced some noise, which appeared as fine 
vertical highlight lines. Because the analysis is 
performed by pixel columns, we needed to smooth 
the image horizontally. The selected filter presents a 
constant known as lag (n/2, where n is the order). 
Each pixel needed to be moved n/2 to the left in 
order to restore the image. Figure 7 shows the graph 
of the pixel values of column 500 of the original 
photograph and the filtered data, which appears very 
smooth.  

 
Figure 6. Frontal (left) and lateral (right) views. 
 

 
Figure 7. Filtered signal of column 500 of the image matrix. 

 

Once the image had been filtered, we studied it, for 
example, by focusing on the pixels of column 460, 
shown in Figure 8. The maximum intensity (points 
with a high value) corresponds to the intersection 
between column 460 and the laser beams. The signal 
progressively descends from left to right. This 
implies that the bottom part of the photograph is a 
little darker than the upper part. The six maximum 
points representing the position of the lasers cannot 
be obtained because there may be other relative 
maximums that do not correspond to a laser beam. A 
more detailed algorithm was applied in order to 
detect the laser beams. A new FIR filter was also 
applied to the image in order to smooth the high-
frequency noise signal. Figure 9 shows column 460 
after being filtered and selected according to the 
lowest second derivative. Once the column had been 
filtered, practically the only peaks that remained 
were those that needed to be determined. A series of 
different pre-processing steps were carried out on 
the image before it was in the best condition for the 
beams and the surface to be surveyed. That is, some 
pixels not correctly detected in the image needed to 
be eliminated, some maximums were not real, etc. 
After this process, Figure10 was obtained.  

3.6 Laser-beam detection techniques. Lateral view. 
 Certain problems appeared in this situation. First, 
the resolution of the camera was lower (460x640) 
than that of the Basler, the lens was wide-angle and 
precision was lost because the density of information 
in the final image was lower. Second, the laser 
beams were seen in a tilted view and the detection of 
the maximum by columns was therefore discarded. 
A new technique, morphological image treatment, 
needed to be used in this image view (Serra, 1994). 

 
Figure8. Pixel intensity distribution of column 460. The peaks 
are the laser beams.  
 
The first step was to convert the image to a binary 
image by means of a threshold: 1 was given over a 
certain pixel threshold value and 0 was given to the 
rest. The threshold was chosen by reaching a 
compromise between losing good information and 
adding extra bad information. This made image 
treatment difficult, i.e. there were gaps in white 
areas, overlapping laser beams, etc. Figure 11 shows 



the results obtained by applying different thresholds 
in the binary-conversion process.  

 
Figure 9. Column 460 filtered, localized and ordered by the 
lowest second derivative. 
Once the image had been processed, the skeleton of 
the image was found. First, however, we made a 
series of corrections, as in the frontal view. We 
eliminated some spurious points and groups of 
points that interfered with the detection of the main 
laser beams. To do this, we used a MATLAB image 
function called “bwmorph” with options such as 
“Clean, Fill or Spur”. The image was then ready for 
the skeleton process.  

 
Figure10. A frontal image taken by the Basler camera that has 
been treated mathematically.  
We performed successive “thinning”, so the lines 
became thinner and thinner and the border pixels 
were erased until no change was noticeable. We 
used MATLAB and the image function with the 
“thin inf” option. Finally, dendrite forms grew 
indiscriminately from the main laser beams, and we 
generated a new code to trim the skeleton. Figure 12 
shows different skeletons obtained with different 
procedures.Another procedure that worked well was 
applying a filter, before applying the threshold, defined 
by the matrix  

0 0 1 1 1
1 0 1 1 1 0
9

1 1 1 0 0
h

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

                    (19) 

which simply assigns the mean of the eight 
neighbours and itself and respects the laser direction. 

Figure 12 shows that the application of this mean 
smoothes the line and fills the gaps. The threshold is 
therefore necessary to obtain the skeleton. 

 

4 RESULTS 

We used frontal images taken with the Basler 
camera (Figure 10). The entire exercise involved 30 
fps for 6 seconds. 
Calibration: First, a vector x  contains the 
calibration points in 3  and X represents its 
correspondents in the photograph. In this example, 
we added 195 calibration points from three different 
calibration box positions and some points on the 
floor in order to obtain the matrix projection  
A column vector d was declared to contain the 
coordinates of the laser planes. The curve i 
belonging to the plane ( )x d i=  was obtained.  
Laser curve determination: If pixel value matrix A 
contains the photograph to be treated, the technique 
of maximum and the filter must be applied to 
smooth the image and to trim the dendrite forms 
attached to the main lines. Thus, we obtained a 
structure that had the proper pixel position and curve 
order.  

 
Figure 11. The process of applying different thresholds (a to d) 
caused a loss of information. The lines appear to be cut.  
 

 
Figure 12. Results for different procedures. Dendrites are 
attached to the main lines.  
 
Surveying: We then obtained the coordinates in 3  
by applying the inverse transformation M, which 



converts pixel coordinates into real coordinates. 
Figure 13 presents the results, which show how the 
water formed a vertical wall near the exit wall. 
  

 
 

 
 
Figure 13 Reconstruction of laser beams from the Lumenera 
camera.  
 
Results from the Basler camera position: Due to the 
excellent position and high-quality information of 
the Basler camera, a numerical/experimental 
comparison is presented here. The mixture of water 
and milk flowed very quickly across the platform, 
producing a jet flow that increased in width from 40 to 
240 cm. The front of the flow moved very quickly, 
close to 342 cm/s, which was faster than the theoretical 
value of 221 cm/s given by the Ritter solution.  
 

    
Figure 14. Result obtained by applying the mask given by the 
matrix of Equation (19). 

 
Figure 15. Experimental 3D surface from the Basler camera at 
2.45 s.  

 

Figure 16. Numerical 3D water surface from FLATMODEL at 
2.45 s.  
 
Figure 15 and Figure  show the experimental and 
numerical results respectively. The numerical data 
were taken from FLATModel, which was created by 
GITS (some aspects are discussed in Medina et al. 
2006), and the experimental datea were obtained by 
interpolating Figure 13. The instant compared is 
2.45 seconds after the flow passed the end of the 
flume. The numerical data has a smoother shape 
than the experimental data. Also, the flow of water is 
more vertical in the experimental images than in the 
numerical results. This is because reality is more 
complex than the 2D Saint-Venant solution. The 
vertical zones do not obey the Saint-Venant 
hypothesis. The shapes and heights appear similar in 
both representations but are slightly higher in the 
numerical results. The following comparison 
between experimental and numerical data refers to 
fan expansion. ¡Error! No se encuentra el origen 
de la referencia. 17 shows all data below a height of 
2 mm. The resulting angles are 36 and 23º for the 
numerical and experimental data respectively. The 
experimental fan opens faster than the numerical 
one.  

 
Figure 17. Comparison of the fan in the experimental and 
numerical data. T = 2450 ms. The data is cut off at a height of 
2 mm.  
Figure 18 and Figure 19 show the behaviour of the 
absolute error, which is calculated as the 
experimental data minus the numerical data. The 
numerical and experimental data agree throughout 
the area of study. The only regions that are very 
different are those which fail to meet the Saint-
Venant conditions. Nevertheless, the comparison 
shows that the data that has an absolute error of less 
than 40% has a mean error of 13.9% throughout the 
area of study, whereas the data that has an absolute 
error of 20% has a mean error of 9%. 
 



 
Figure 18. 3D diagram of absolute error. The highest errors are 
located in the area with high water gradients. 

 
Figure 19. Lateral view of the absolute error surface data. 

5  CONCLUSION 

This paper presents a procedure that works well in 
2D water-surface treatment. The camera must be 
properly calibrated and geometrical aberrations 
should be corrected if necessary. The use of Nikon 
or other high-quality lenses (and other pre-process 
corrections) clearly makes image processing easier. 
Milk is essential to obtaining clean, bright laser 
beams because only opaque liquids work well with 
laser light. The numerical/experimental comparison 
shows good agreement. The experimental data 
shows certain numerical difficulties in the high-
gradient zone, where the Saint-Venant hypothesis 
fails due to the high curvature of the current lines 
and the non-hydrostatic pressure distribution. The 
overall absolute error for the surface showed good 
agreement, with a mean error of around 9% when 
the threshold is 20%.  
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