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Border Collision Bifurcations of Stroboscopic Maps in Periodically Driven Spiking
Models∗

A. Granados†, M. Krupa†, and F. Clément†

Abstract. In this work we consider a general nonautonomous hybrid system based on the integrate-and-fire
model, widely used as simplified version of neuronal models and other types of excitable systems.
Our assumptions are that the system is monotonic, possesses an attracting subthreshold equilibrium
point, and is forced by means of a periodic pulsatile (square wave) function. In contrast to classical
methods, in our approach we use the stroboscopic map (time-T return map) instead of the so-called
firing map. It becomes a discontinuous map potentially defined in an infinite number of partitions.
By applying theory for piecewise-smooth systems, we avoid relying on particular computations, and
we develop a novel approach that can be easily extended to systems with other topologies (expansive
dynamics) and higher dimensions. More precisely, we rigorously study the bifurcation structure in
the two-dimensional parameter space formed by the amplitude of the pulse and the ratio between
T and the duration of the pulse (duty cycle). We show that it is covered by regions of existence of
periodic orbits given by period adding structures. The period adding structures completely describe
not only all the possible spiking asymptotic dynamics but also the behavior of the firing rate, which
is a devil’s staircase as a function of the parameters.
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furcation
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1. Introduction. In the context of neuronal modeling (and similarly for hormone release),
one relies on systems that are able to exhibit large-amplitude responses under certain stimuli.
An example of such behavior is an action potential (AP) or spike of a neuron. There exist
accurate but quite complex models of APs, e.g., the Hudgkin–Huxley equations [HH52]. Sim-
pler models are the Morris–Lecar [ML81] or the FitzHugh and Nagumo [Fit61, NAY62]. All
these models use the principle of excitability and often exhibit slow–fast dynamics.

Hybrid systems with resets are used as approximate models of excitability, with the dis-
continuity, that is, the reset, used to mimic the spike. In many contexts, a spike occurs when
the system receives a sufficient amount of stimulus.

One can distinguish between different types of systems with resets. The simplest are
integrate-and-fire models, for which the differential equation exhibits very simple dynamics
(it is constant or linear). Other models include more complicated subthreshold dynamics
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1388 A. GRANADOS, M. KRUPA, AND F. CLÉMENT

including instabilities (which introduce expanding dynamics) in order to provide more realistic
representations of the underlying phenomena. This is the case of the so-called Izhikevich
model [Izh03]. Other approaches [BG05, TB09, MHR12] let the threshold depend on the state
variable (thus increasing the dimension of the system) in order to obtain a more accurate model
with possibly more complex properties, as is the case of type III neurons [CPF08, Izh07].

Due to the discontinuity in the trajectories given by the reset, one cannot directly apply
classical theory for smooth systems in order to study these types of excitable systems. A typical
approach to overcoming this problem is to consider the so-called adaptation, firing, or impact
map, which is a Poincaré map onto the threshold [KHR81, CB99, CTW12, TB09, JMB+13,
DKTG12]; that is, one takes an initial condition on the threshold (which leads to a reset)
and one then integrates the system until the threshold is reached again. This is a well-known
technique also in other disciplines involving piecewise-smooth dynamics (see [dBBCK08] for
examples); this map becomes the composition of smooth maps and hence provides a regular
version of the system which can be studied by means of classical tools for smooth systems.

Note that, in order to compute the firing map, one needs to know the time needed by the
system to perform the next spike (firing times). Even assuming linearity, these times need to
be computed numerically, as they involve transcendental equations. Hence, one also relies on
numerical computations in order to derive properties of the firing map.

When introducing a T -periodic forcing to the system (a periodic current in the neuronal
context), the firing map must include time as a variable. In fact, for the one-dimensional
case, it becomes a map that returns the next firing time. Hence, in order to study the
existence of periodic orbits, explicit knowledge of the behavior of these times becomes crucial,
as one needs to check whether the difference between consecutive spiking times is congruent
(rational multiple) with T . Results in the context of firing maps have been obtained in specific
cases. For example, it was shown in [KHR81] that, for a linear system, by using the explicit
expression for the flow, one can approximate the firing map by a certain circle map and derive
information about rotation and firing numbers of existing periodic orbits. By combining
this same technique with numerical simulations, it was shown in [COS01] that one obtains
similar results when introducing a periodic forcing to a two-dimensional integrate-and-fire-
or-bursting system. There the authors studied in more detail the existence of periodic orbits
(mode locking) and showed numerically that the firing number may follow a devil’s staircase
as a function of parameters.

In this work we present a new approach to studying periodically forced systems with
resets based on the use of the so-called stroboscopic map (time-T return map). One of the
advantages of our approach is that it leads to a general setting for periodically forced systems.
Already in the smooth case such systems are better understood by means of the stroboscopic
map than with Poincaré maps onto transverse sections in the state space. In the latter, as
mentioned above, one has to check for congruency between the passage times and the period of
the forcing, which requires explicit knowledge of the solutions of the system or approximations
by circle maps in order to study the existence of periodic orbits. However, when dealing with
the stroboscopic map, this is reduced to the study of existence of fixed (or periodic) points
of this map, which comes by applications of classical results as the implicit function theorem
(when studying perturbations) or Brouwer’s theorem.

The use of the stroboscopic map has been avoided in systems with resets because itD
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becomes a discontinuous (piecewise-smooth) map. The sets of initial conditions for which this
map becomes smooth are identified by the number of spikes exhibited by their trajectories
when flowed for a time T , and hence this map is potentially defined in an arbitrarily large
number of partitions. However, in this work we use recent results in nonsmooth systems to
face these discontinuities and rigorously study a general and large class of hybrid systems with
resets.

More precisely, we consider a one-dimensional monotonic system with an attracting sub-
threshold equilibrium point under a T -periodic forcing consisting of a periodic square wave
function. This is given by a pulse of amplitude A and duration dT , with 0 ≤ d ≤ 1 (duty
cycle), and is 0 for the rest of the period T . Such a periodic stimulus is used in many contexts,
as the stimulation of an excitable cell (e.g., a hormone release) frequently occurs in a pulsatile
form. Such a periodic forcing indeed adds an extra nonsmoothness, as one switches from one
autonomous system to another at the switching times, when the pulse is switched on or off.
However, this singularity consists of a discontinuity on the field that neither adds nor removes
extra dynamical objects and bifurcations. As usual when dealing with piecewise-smooth fields,
in this case the solutions of the system are continuous and obtained by proper concatenation
of the solutions of both fields, as long as the threshold is not reached.

Our results consist of a rigorous and detailed description of the bifurcation scenario formed
by the parameters describing the input pulse: its amplitude A and its duty cycle d. We show
that there exists an infinite number of regions in this two-dimensional parameter space for
which the stroboscopic map exhibits a fixed point. The regions in between are covered by
regions of existence of periodic orbits following the so-called period adding structure. The
rotation number associated with these periodic orbits is a devil’s staircase as a function of the
parameters. This allows us to show that the asymptotic firing rate of the system also follows
a devil’s staircase when the mentioned parameters are varied.

This work is organized as follows.
In section 2 we describe the system, announce our results, and describe the state of the

art in piecewise-smooth maps relevant to our work. In section 3 we prove our results, and in
section 4 we validate them by providing numerical computations for three examples.

2. Background and results. Let us consider a nonautonomous periodic system given by

(2.1) ẋ = f(x) + I(t), x ∈ R,

with f(x) ∈ C∞(R) and I(t) a T -periodic square-wave function

(2.2) I(t) =

{
A if t ∈ (nT, nT + dT )],

0 if t ∈ (nT + dT, (n + 1)T ],

with 0 ≤ d ≤ 1. Let us submit system (2.1) to the reset condition

(2.3) x = θ −→ x = 0;

that is, the trajectories of system (2.1) are instantaneously reset to 0 whenever they reach the
threshold given by x = θ. This provides a new system which is in the class of hybrid systems,
as it combines an algebraic condition with a differential equation. Due to the generalityD
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1390 A. GRANADOS, M. KRUPA, AND F. CLÉMENT

of function f , this system represents a large class of the spiking models which are used as
simplifications of slow–fast systems modeling excitable cells as neurons. Hence, we will refer
to the discontinuities given by the reset condition as spikes.

Let us assume that the system

(2.4) ẋ = f(x)

satisfies the following conditions:
H.1. It possesses an attracting equilibrium point

(2.5) 0 < x̄ < θ.

H.2. f(x) is a monotonic decreasing function in [0, θ]:

f ′(x) < 0, 0 ≤ x ≤ θ.

The reset condition (2.3), in combination with conditions H.1–H.2, implies that the dy-
namics we are interested in is located in the interval [0, θ). In fact, by identifying 0 ∼ θ, this
interval can be seen as a circle. However, for our convenience, from now on we will consider
the state space to be given by the interval [0, θ).

Note that the fact that the equilibrium point x̄ is globally attracting in [0, θ) prevents the
system from exhibiting spikes without the input. It can hence be considered as the limit of a
slow–fast system.

One of the most relevant features of the asymptotic dynamics of system (2.1)–(2.3) is the
firing rate, i.e., the average number of spikes exhibited by the system per unit time:

(2.6) r(x0) = lim
τ→∞

#(spikes performed by φ(t;x0) for t ∈ [0, τ ])

τ
,

where φ(t;x0) is the trajectory of the system with φ(0;x0) = x0. When the system possesses
an attracting periodic orbit, this quantity does not depend on the initial condition x0 and
becomes the number of spikes performed by this periodic orbit along one period divided by
the length of the period.

Hence, to obtain a qualitative and quantitative description of the firing rate we study the
existence of periodic orbits for system (2.1)–(2.3) and their bifurcations under conditions H.1–
H.2. In particular, we provide a full description of the bifurcation scenario for the two-
dimensional (d, 1/A)-parameter space, which is shown in Figure 1. More precisely, under
conditions H.1–H.2 and for any T > 0, we prove the following.

• The (d, 1/A)-parameter space, d ∈ (0, 1), contains an infinite number of disjoint
bounded regions (gray regions in Figure 1(a)) for which system (2.1)–(2.3) possesses
a unique globally attracting T -periodic orbit (fixed point of the stroboscopic map).
These regions are ordered clockwise in such a way that the T -periodic orbit corre-
sponding to the next region exhibits one spike more per period than the previous one
(Propositions 3.2 and 3.3).

• In between the regions corresponding to the existence of fixed points of the strobo-
scopic map (gray regions) are the regions defined by the existence of periodic orbits of
arbitrarily large periods (white regions). These periodic orbits are organized by the
period adding structure (Proposition 3.4).D
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Figure 1. (a) Bifurcation scenario for system (2.1)–(2.3). In gray regions there exist T -periodic orbits, and
in white regions there exist higher periodic orbits following an adding structure (see text). In B, C, D, and
E one finds T -periodic orbits spiking 0, 1, 2, and 3 times per period, respectively. (b) Periods of the periodic
orbits found along the line shown in (a).

• Along any invertible and continuous curve

λ ∈ R �−→ (d(λ), 1/A(λ))

satisfying d(λ) ∈ (0, 1), (1/A(λ))′ < 0, 1/A(λ) → 0 when λ → ∞ and crossing all the
regions mentioned above (as the straight line labeled in Figure 1(a)), the firing rate
evolves following a devil’s staircase from 0 to ∞. This is explained in section 3.4 and
is a consequence of Proposition 3.4.

The main tool that we will use to prove the previous results is the stroboscopic map
at return time T . As will be shown, this is a piecewise-smooth map defined on an infinite
number of domains containing initial conditions for which system (2.1)–(2.3) exhibits different
numbers of spikes when flowed for a time T . For each domain, there exist parameter values
d and A for which this map has a fixed point located in this domain; these parameter values
correspond to the gray regions in Figure 1.

Between two consecutive regions where fixed points exist (white regions in Figure 1(a)),
the stroboscopic map is discontinuous at the boundary between two consecutive domains and
can be written as the normal form map

(2.7) g(x) =

{
μL + gL(x) if x < 0,

− μR + gR(x) if x > 0,

with gL, gR smooth functions satisfying gL(0) = gR(0) = 0. As the stroboscopic map is given
by the integration of a flow, its fixed points have positive associated eigenvalues, and hence
gL(x) and gR(x) are increasing functions near the origin. Moreover, due to the assumption
f ′ < 0, the stroboscopic map is everywhere contracting (under the conditions of Lemma 3.4),
so that |g′L| < 1 and |g′R| < 1.D
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0

0

0

0

LL

RRL,RL,R

LRLR

L2RL2R

LR
2

LR
2

μRμR

μLμL

(a)

0
0

20

5

10

15

φ
π
2

p

(b)

Figure 2. The period adding big bang or gluing bifurcation. (a) (μL, μR)-parameter space; (b) periods of
the periodic orbits along the curve shown in (a).

We first describe the bifurcation scenario for map (2.7), which is shown in Figure 2. The
following statements are not obvious and partially come from results scattered throughout
the literature (see references below). They have been recently assembled and completed in a
review article [GAK14].

Note that, for |μL| , |μR| small enough, if μL < 0 and μR < 0, the map (2.7) possesses
two fixed points, each at each side of the boundary x = 0, which undergo border collision
bifurcations when μL = 0 and μR = 0, respectively. Hence, for μL = μR = 0 both fixed
points simultaneously collide with the boundary, undergo border collision bifurcations, and
no longer exist. For μL, μR > 0 there exists an infinite number of border collision bifurcation
curves separating regions of existence of periodic orbits with arbitrarily high periods. These
are organized by the so-called period adding phenomenon. To explain this, we first introduce
the usual symbolic dynamics.

Let us assume that (x1, . . . , xn) is an n-periodic orbit of the map (2.7). To this periodic
orbit we assign a symbolic encoding given by

(2.8)
xi → L if xi < 0,

xi → R if xi > 0.

For each periodic orbit we obtain a symbolic sequence of L’s and R’s depending on whether
the orbit steps on the left or on the right of the boundary. Obviously, the length of the
symbolic sequence is the period of the periodic orbit.

Then, the period adding structure is described as follows. Between the regions of existence
of periodic orbits with symbolic sequences σ1 and σ2 and periods nσ1 and nσ2 there exists
a region corresponding to the existence of a periodic orbit with symbolic sequence σ1σ2.
Clearly, the period of this periodic orbit is nσ1 + nσ1 . This occurs ad infinitum, as illustrated
in Figure 2(b), where one can see the periods of the periodic orbits obtained when crossing
all these regions along a curve such as that shown in Figure 2(a).

Beyond the evolution of the periods of the periodic orbits, one of the most relevant quan-D
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Figure 3. (a) Symbolic sequences and rotation numbers forming a Farey tree structure for the period adding
bifurcation. (b) Devil’s staircase associated with the rotation numbers along the Farey tree, obtained along a
curve such as the one labeled in Figure 2(a).

tities associated with the adding scheme is the rotation number corresponding to the periodic
orbits obtained when crossing all these regions in the parameter space. As shown in Fig-
ure 3(a), the rotation number associated to each periodic orbit is obtained by dividing the
number of R symbols contained in its symbolic sequence by the period of the periodic orbit
(see [GGT84, GIT84]). Hence, the rotation number follows a devil’s staircase from 0 to 1
when parameters are varied along curves such as that shown in Figure 2(a). A devil’s stair-
case is a monotonically increasing continuous function which is constant almost everywhere,
except for a Cantor set of zero measure. In this Cantor set, which consists of the border
collision bifurcation curves shown in Figure 2(a), the rotation number becomes irrational and
no periodic orbit exists, but there exists a quasi-periodic orbit.

The period adding phenomenon described above was first described in [GGT84] and was
later studied in more detail in [GPTT86, LPZ89, TS86, PTT87, Gam87, GT88]. Subsequently,
this was rediscovered when the authors of [AS06] were numerically investigating map (2.7)
with gL and gR linear functions. The authors of [AS06] provided an accurate description
of the bifurcation scenario in terms of nonsmooth language (border collision bifurcations).
Special attention was given to the codimension-two bifurcation at the origin of the (μL, μR)-
parameter space, which was called the period adding big bang bifurcation, to distinguish it
from the so-called period incrementing big bang bifurcation, both being a special type of
the gluing bifurcation reported in [CGT84, GGT88]. The period incrementing case, which
exhibits a completely different bifurcation scenario, occurs when one of the functions gL or
gR is decreasing and the other one is increasing near the origin (both being contracting
functions), as was rigorously proven in [AGS11]. As mentioned above, a proof for the period
adding bifurcation structure can be found in the recent review article [GAK14].

Theorem 2.1. Let g be a map as in (2.7) such that gL and gR are increasing contractingD
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1394 A. GRANADOS, M. KRUPA, AND F. CLÉMENT

functions:

(2.9)
0 < (gL(x))

′ < 1, x ∈ (−∞, 0),

0 < (gR(x))
′ < 1, x ∈ (0,∞).

Consider a C1 curve in the (μL, μR)-parameter space

γ : [0, 1] −→ R
2

λ �−→ (μL(λ), μR(λ))
,

satisfying
C.1. μL(λ) > 0 and μR(λ) > 0 for λ ∈ (0, 1);
C.2. (μL(λ))

′ > 0 and (μR(λ))
′ < 0 for λ ∈ [0, 1]; and

C.3. μL(0) = 0, μR(1) = 0.
Then, the bifurcation diagram exhibited by the map gλ obtained from (2.7) after performing
the reparametrization given by γ follows a period adding structure for λ ∈ [0, 1]. Moreover,
the rotation number ρ(gλ) of the map gλ is a devil’s staircase as a function of λ such that
ρ(g0) = 0 and ρ(g1) = 1.

Remark 2.1. The increasing and contractive condition (2.9) can be relaxed to be satisfied
locally near x = 0 if μL(λ) and μR(λ) are small enough for λ ∈ (0, 1). This is because the
periodic orbits are located in the absorbing interval [−μR(λ), μL(λ)].

By means of Theorem 2.1 we will show that the stroboscopic map follows period adding
bifurcation structures when the parameters A and d are varied along curves as the straight
line shown in Figure 1(a): the white regions in Figure 1 surrounded by gray regions are filled
by the bifurcation structures shown in Figure 2. We will use the properties of the devil’s
staircase of the rotation number to deduce properties of the firing rate defined in (2.6).

3. Dynamics of the stroboscopic map.

3.1. Notation, properties, and subthreshold dynamics. Let

(3.1) ϕ(t;x0;A)

be the flow associated with system

(3.2) ẋ = f(x) +A

such that ϕ(0;x0;A) = x0. As usual in piecewise-defined systems, by properly concatenating
the flows ϕ(t;x0;A), ϕ(t;x0; 0) and the reset condition (2.3) one obtains the flow

(3.3) φ(t;x0)

associated with system (2.1)–(2.3) such that φ(0;x0) = x0. Due to the reset conditions, this
flow is discontinuous at the times for which spikes occur. In addition, due to the discontinuities
of the forcing I(t) defined in (2.2), the flow φ is nondifferentiable at t = dT mod T .

Note that for the definition of the flow φ associated with the nonautonomous system (2.1)
we consider that the initial condition x0 occurs at t0 = 0. This will be assumed in the rest ofD
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this work and, as we are interested in the existence of periodic orbits, does not present any
loss of generality.

Under assumptions H.1–H.2 we first study the subthreshold dynamics, that is, invariant
objects of system (2.1)–(2.3) that do not interact with the threshold (do not exhibit spikes).

On one hand, if d = 0, then I(t) = 0, and system (2.1)–(2.3) has the same dynamics as
the autonomous system (2.4). That is, it has an attracting equilibrium point at x = x̄.

On the other hand, if d = 1, then I(t) = A. Hence system (2.1)–(2.3) becomes the
autonomous system (3.2) subject to the reset condition (2.3), and, as for d = 0, the T -
periodic forcing does not play any role. By the implicit function theorem, if A > 0 is small
enough, the system possesses an attracting equilibrium point at

x∗ = x̄− A

f ′(x̄)
+O(A2) < θ.

Note that, as f(x) is a monotonically decreasing function (condition H.2), this equilibrium
point increases with A toward the boundary x = θ. Thus, for d = 1, when A is large
enough, this equilibrium point collides with the boundary x = θ and undergoes a border
collision bifurcation. After this bifurcation, the system has a periodic orbit that spikes once
per period. The period of this periodic orbit, δ > 0, becomes the time needed by system
ẋ = f(x) +A with initial condition x0 = 0 to reach the threshold x = θ. This is the smallest
δ > 0 such that

(3.4) ϕ(δ; 0;A) = θ,

if it exists (A is large enough).
Let us now study the subthreshold dynamics of the system when 0 < d < 1. We have the

following proposition.
Proposition 3.1. Let

Q :=
1

T

∫ T

0
I(t)dt = Ad

be small enough. Then, if T > 0 is small enough, system (2.1)–(2.3) has a T -periodic orbit
that does not hit the boundary x = θ.

Proof. The proof is accomplished by averaging the system. After the time rescaling τ = t
T

system (2.1) becomes

(3.5) ẋ = T (f(x) + I(τT )) ,

where ˙ now means the derivative with respect to τ and I(τT ) is 1-periodic. We now consider
the averaged version of system (3.5),

(3.6) ẏ = T (f(x) +Q) .

By the averaging theorem, as system (3.5) is Lipschitz in x, if system (3.6) possesses a hy-
perbolic equilibrium point, then, for T > 0 small enough, system (3.5) possesses a hyperbolicD
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1396 A. GRANADOS, M. KRUPA, AND F. CLÉMENT

periodic orbit (see [BM61, GH83]). This will occur if Q > 0 is small enough, and the equilib-
rium point of (3.6) will be of the form

ȳ = x̄− Q

f ′(x̄)
+O

(
Q2

)
< θ,

where x̄ is the hyperbolic equilibrium point of system (2.4).
Then, the periodic orbit of system (3.5) will be T -close to ȳ.
When A is large, the periodic orbit given by the previous lemma may undergo a border

collision bifurcation and lead to spiking dynamics. This new dynamics will be studied in
sections 3.2 and 3.3 by means of the stroboscopic map, i.e., the time-T return map

(3.7)
s : [0, θ) −→ [0, θ)

x0 �−→ φ(T ;x0)
.

The main results in this work rely on the fact that s is a piecewise-smooth map. To see this,
we define the sets

(3.8)
Sn =

{
x0 ∈ [0, θ) s.t. φ(t;x0) reaches the threshold {x = θ}

n times for 0 ≤ t ≤ T
}
, n ≥ 0.

When restricted to some set Sn, the flow φ(t;x0) becomes a certain combination of the smooth
flows ϕ(t;x0;A), ϕ(t;x0; 0) and the smooth mapping θ �→ 0 (given by the reset condition)
which does not depend on the initial condition x0 ∈ Sn. Hence, the stroboscopic map s

becomes a smooth map in each of the sets Sn and is as regular as the flow ϕ(t;A). Given
m 	= n, the flow, when restricted to Sn and Sm, performs a different number of spikes in the
time window [0, T ]. Hence s is given by a different combination of the mentioned maps. Thus,
s is smooth on the interiors of Sn and Sm but will typically be discontinuous at its boundaries.
As will be discussed below (see Remark 3.2), the stroboscopic map remains discontinuous even
if one identifies 0 ∼ θ and considers system (2.1)–(2.3) in the circle.

Note that some of the sets Sn may be empty. The next lemma tells us that at most two of
them are nonempty and that they must be consecutive (see Figure 4 for S2 and S3). Moreover,
let Σn ∈ Sn be defined by the requirement

(3.9) φ(dT ; Σn) = θ.

That is, Σn is the (unique) initial condition whose trajectory spikes n times and performs its
last spike precisely at t = dT . The next lemma tells us also that Σn is the value at which the
map s exhibits a discontinuity and separates the sets Sn−1 and Sn.

Lemma 3.1. Assume that there exists Σn ∈ Sn as given in (3.9) for some n ≥ 1. Then the
following statements hold:

(i) If Σi,Σj ∈ [0, θ), then i = j.
(ii) If Σn ∈ (0, θ), then [0,Σn) = Sn−1 and [Σn, θ) = Sn.
(iii) If Σn = 0, then [0, θ) = Sn.D

ow
nl

oa
de

d 
10

/2
5/

14
 to

 1
28

.9
3.

16
2.

74
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STROBOSCOPIC MAPS IN SPIKING MODELS 1397

 
 

 

 

 

0

S3

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

S2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TdT

θ

Σ3

t

φ(t; x)

(a)

 

 0

0

Σ3x2 x3
θ

θ

x

s(x)

(b)

Figure 4. (a) The trajectories of systems (2.1)–(2.3). Dashed line: Trajectory with Σ3 as initial condition.
Thick line: Trajectory with x3 > Σ3 as initial condition, which spikes three times. Normal line: Trajectory
with x2 < Σ3 as initial condition, which spikes two times. (b) The stroboscopic map, with a discontinuity at
x = Σ3.

Proof. Part (i) comes from the fact that the flow φ is invertible. Hence, if it exists, the
initial condition that makes φ reach θ at t = dT is unique.

We now prove (ii). Let

(3.10) tn < tn + δ < · · · < tn + (n− 2)δ < tn + (n − 1)δ = dT

be the sequence of times for which the trajectory φ(t; Σn) exhibits spikes. Let us now take an
initial condition x0 < Σn. For t < dT the flow φ(t;x0) becomes the flow of the autonomous
system ẋ = f(x) + A plus the reset condition (2.3). Hence, the first spike of the trajectory
φ(t;x0) occurs for t > tn. By induction, the n − 1th spike for such a trajectory occurs for
t ∈ (dT − δ, dT ), with δ as in (3.4). For t > dT the trajectory φ(t;x0) becomes the flow
of system ẋ = f(x), which has an attractor x̄ ∈ (0, θ); hence, no other spikes can occur for
t > dT , and the trajectory φ(t;x0) exhibits exactly n− 1 spikes for 0 ≤ t ≤ T . Using (i), we
get that [0,Σn) = Sn−1. Arguing similarly, any trajectory φ(t;x0) with x0 ∈ [Σn, θ) exhibits
exactly n spikes for 0 ≤ t ≤ T , and thus [Σn, θ) = Sn.

Proceeding similarly, if Σn = 0, then all initial conditions in [0, θ) lead to trajectories
exhibiting an nth spike for t ∈ (dT − δ, dT ). Hence, Sn = [0, θ).

Remark 3.1. The values Σn become upper and lower boundaries of the sets Sn−1 and Sn,
respectively.

The following results give us properties of the boundaries Σn which we will use in sec-
tion 3.2.

Lemma 3.2. Let d ∈ (0, 1) and A > 0, and assume Σn ∈ (0, θ). Then Σn is a monotonically
decreasing function of A.

Proof. To avoid confusion with the differential and derivative, in this proof we rename the
duty cycle d as a.

The boundary Σn is determined by the initial condition such that the flow φ(t;x0) collides
with the boundary for the nth time at t = aT . Let ϕ(t;x0;A) be the flow defined in (3.1),D
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and let δ > 0 be as in (3.4) and (3.10), i.e., the time needed for the trajectory with initial
condition x0 = 0 to reach the threshold θ, as defined in (3.4). Note that δ is a decreasing
function of A. In fact, rewriting (3.4) as

∫ θ

0

dx

f(x) +A
= δ,

we get that
dδ

dA
= −

∫ θ

0

dx

(f(x) +A)2
< 0.

The boundary Σn is thus determined by the equation

ϕ(aT − (n− 1)δ; Σn, A) = θ,

or, equivalently, by the equation

∫ θ

Σn

dx

f(x) +A
= aT − (n− 1)δ.

Differentiating, we get that

dΣn

dA
= − (f(Σn) +A)

(∫ θ

Σn

dx

(f(x) +A)2
− (n− 1)

dδ

dA

)
.

Noting that f(Σn)+A > 0 because the system ẋ = f(x)+A possesses an attracting equilibrium
point for x > θ (which permits it to spike), we get that

dΣn

dA
< 0.

The next lemma provides the lateral values of the stroboscopic map s at the discontinuities.
Lemma 3.3. Let

s− = ϕ(T (1 − d); θ; 0),(3.11)

s+ = ϕ(T (1 − d); 0; 0),(3.12)

where ϕ(t;x0;A) is the flow defined in (3.1).
If Σn ∈ [0, θ), then the lateral images of Σn by s do not depend on A or n and become

s(Σ−
n ) = s−,(3.13)

s(Σ+
n ) = s+.(3.14)

Proof. The trajectory of Σn is such that the flow φ(t; Σn) reaches the threshold for the
nth time exactly at t = dT . The limiting value s(Σ−

n ) is obtained assuming that the flow does
not spike at t = dT (the threshold is almost reached). Hence, one just needs to integrate the
flow ϕ(t;x0; 0) from t = dT to t = T with initial condition x0 = θ. This gives (3.13).D
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On the other hand, the right image is computed by adding a new spike at t = dT . Hence,
one has only to proceed identically but replacing the initial condition by that given by the
reset, x0 = 0.

Remark 3.2. Due to the fact that f(0) 	= f(θ), if one identifies 0 ∼ θ, the field (2.1)
becomes discontinuous. For the initial condition x = Σn the flow grazes, that is, it has contact
points with the threshold without crossing it. Hence, even when considering system (2.1)–(2.3)
in the circle, the stroboscopic map is still discontinuous at x = Σn.

Lemma 3.4. The following facts hold:
(i) For any n ≥ 1, the stroboscopic map restricted to [0,Σn) is always contracting.
(ii) If n is large enough, s is also contracting in [Σn, θ).
Proof. Let δ be as defined in (3.4) and x ∈ [0,Σn). Note that φ(iδ;x) = x for all x and

0 ≤ i ≤ n, where φ(t;x) is the flow with the resets defined in (3.3). Let ε = dT − (n − 1)δ.
Then, when restricted to [0,Σn), the stroboscopic map becomes

s(x) = ϕ(T − dT ;ϕ (ε;x;A) ; 0).

The fact that ε does not depend on x guarantees that s(x) is contracting, as it becomes
the (continuous) concatenation of two contracting flows using x as initial condition. This
proves (i).

In order to prove (ii), let x ∈ [Σn, θ) and ε = nδ − dT . Then, s(x) becomes

s(x) = ϕ(T − dT ;ϕ−1(ε;x; 0);A).

We now compute s′(x):

(3.15) s′(x) = exp

(
−
∫ nδ

dT
f ′(ϕ(t;x;A))dt +

∫ T

dT
f ′(ϕ(t;x; 0))dt

)
.

Recall that f ′ is a negative function, and note that δ is a function of A satisfying nδ− dT < δ
and (n− 1)δ < dT . Hence, for M satisfying |f ′(x)| ≤ M for all x ∈ [0, θ], we get

−
∫ nδ

dT
f ′(ϕ(t;x;A))dt ≤ δM ≤ M

dT

n− 1
.

Hence, for n large enough, s′(x) < 1 for all x ∈ [Σn, θ).

3.2. Border collision bifurcations of spiking fixed points. As noted in the previous sec-
tion, nonspiking periodic orbits (without interaction with the threshold) exist for A > 0 small
enough and d = 0 or d = 1. Hence, the natural parameter space in which to study the possi-
ble bifurcations leading to spiking dynamics is (d,A). Equivalently, we will consider (d, 1/A)
instead. This is because, in this space, the bifurcation curves will be bounded.

In order to show that the bifurcation scenario in the (d, 1/A)-parameter space for sys-
tem (2.1)–(2.3) is equivalent to that shown in Figure 1 and described in section 2, we first
show the existence of an infinite number of regions for which s possesses fixed points. These
fixed points are located at different domains Sn defined in (3.8). These regions in the param-
eter space are the gray regions in Figure 1. As shown in the next result, when they exist,D

ow
nl

oa
de

d 
10

/2
5/

14
 to

 1
28

.9
3.

16
2.

74
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1400 A. GRANADOS, M. KRUPA, AND F. CLÉMENT

these fixed points are unique and are located at one side of some discontinuity Σn. By varying
parameter values, they bifurcate when entering the white regions in Figure 1(a).

The next proposition provides the existence of unique fixed points, x̄n ∈ Sn for any n ≥ 0.
Proposition 3.2. Let d ∈ (0, 1) and n ≥ 0. Then, there exists some value of A for which

the stroboscopic map s defined in (3.7) possesses an attracting fixed point x̄n ∈ Sn. When it
exists, this fixed point becomes the only invariant object of s.

Proof. The existence of the fixed point x̄0 ∈ S0 of the stroboscopic map s (3.7) for any
d ∈ (0, 1) when A > 0 is small enough comes from Proposition 3.1. By induction we now show
that, for any n ≥ 0, there exist values of A for which one finds fixed points x̄n of s leading to
periodic orbits spiking n times: x̄n ∈ Sn. Assume that there exists a fixed point x̄n−1 ∈ Sn−1.
By increasing A if necessary, we can assume that Sn−1 = [0,Σn) (x̄n−1 is located at the left
of the discontinuity). Then, by Lemma 3.2, Σn is a monotonically decreasing function of A.
Hence, by further increasing A, one necessarily finds some value A = AC

n(d) for which Σn = 0.
At this point, by Lemma 3.1(iii), we get that [0, θ) = Sn, and the map s becomes continuous
and contracting (see Lemma 3.4). Hence, as s(Sn) ⊂ Sn, there necessarily exists a fixed point
x̄n ∈ Sn for A = AC

n(d) which is attracting and the unique invariant object.
We now show that, in general, when they exist, the fixed points x̄n are attracting and the

only possible invariant objects. On one hand, note that the stroboscopic map is monotonically
increasing. On the other hand, we recall that, from Lemma 3.1, we use that at most two sets
Sn−1 and Sn or Sn and Sn+1 can coexist. Hence, if s possesses a fixed point x̄n ∈ Sn, there
exist only three possible situations:

1. x̄n ∈ (0, θ) ⊂ Sn;
2. [0,Σn) = Sn−1 and x̄n ∈ [Σn, θ) = Sn; and
3. x̄n ∈ (0,Σn+1) ⊂ Sn and [Σn+1, θ) = Sn+1.

Note that x̄ ∈ (0, θ) implies that necessarily x̄n 	= 0.
The first case leads to the situation considered above, as the map is continuous (Σn = 0).
In the second and third cases we argue below as before and also using the fact that s has

a negative gap at its discontinuities (illustrated in Figure 6); that is,

lim
x→(Σn)−

s(x) > lim
x→(Σn)+

s(x) ∀n ≥ 0

(see Figure 4 for n = 3). This is a direct consequence of Lemma 3.3.
In the third case, contractiveness comes from Lemma 3.4(i). In the second case, we rewrite

expression (3.15) integrating with respect to x instead of t, and we get

s
′(x̄n) = exp

(
−
∫ x̄n

y

f ′(x)

f(x) +A
dx+

∫ x̄n

y

f ′(x)

f(x)
dx

)
,

where y = ϕ−1(nδ − dT ; x̄n;A). As x̄n < x̄,

− f ′(x)

f(x) +A
<

f ′(x)

f(x)
< 0.

Hence s′(x̄n) < 1, as both functions are integrated along the same interval.D
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0 TdT

θ

x̄2=Σ2

t

φ(t; x̄2)

(a)

 

 

 

0 TdT

θ

Σ2

x̄2

t

φ(t; x̄2)

(b)

 

 
 

0 TdT

θ

x̄2

Σ3

t

φ(t; x̄2)

(c)

 

 

0 TdT

θ

x̄2=Σ3

t

φ(t; x̄2)

(d)

Figure 5. T -periodic orbit spiking twice per period (fixed point x̄2 of the stroboscopic map) and its bifurca-
tions when A is varied along (AR

2 (d), AL
2 (d)). It undergoes border collision bifurcations when it collides with the

boundaries Σ2 and Σ3, (a) and (d), respectively. The periodic orbit shown in (d) is its limit when x̄2 → Σ−
3 ;

note that for x̄2 = Σ3 it should be reset to 0 at t = dT ; this is why it is shown in gray. In (b) and (c), the
trajectories of these boundaries are shown in dashed lines; note that they collide with the threshold at t = dT .
Parameter values for panel (c) are the same as for point D of Figure 1(a). The four figures are in one-to-one
correspondence with the four figures of Figure 6, where the stroboscopic map is shown.

The next proposition provides us with the bifurcation curves at which the fixed points
x̄n ∈ Sn given in Proposition 3.2 undergo border collision bifurcations, that is, curves for
which the fixed points collide with the boundaries:

A −→ AL
n(d) =⇒ x̄n −→ (Σn)

− , n ≥ 0,

A −→ AR
n (d) =⇒ x̄n −→ (Σn−1)

+ , n ≥ 1.

Note that x̄0 can undergo only one bifurcation—for A = AL
0 (d) := A0(d).

Proposition 3.3. For any 0 < d < 1 there exists a sequence

(3.16) 0 < A0(d) < AR
1 (d) < AL

1 (d) < AR
2 (d) < AL

2 (d) < . . . ,D
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 0

0

Σ2
θ

θ

x

x̄2

s(x)

(a)

 

 0

0

Σ2
θ

θ

x

x̄2

s(x)

(b)

 

 0

0

Σ3
θ

θ

x

x̄2

s(x)

(c)

 

 0

0

Σ3
θ

θ

x

x̄2

s(x)

(d)

Figure 6. Stroboscopic map for the T -periodic orbits shown in Figure 5. In (a) and (d) the fixed point x̄2

undergoes a border collision bifurcation when it collides with the boundaries Σ2 from the right and Σ3 from the
left, respectively. Note that, in (d) the fixed point is shown in gray to emphasize that the map indeed takes the
value on the right for x = Σ3. In (b)–(c) the boundary Σ2 disappears, and a new boundary Σ3 appears, while
the fixed point x̄2 remains.

such that, for every n > 0, the stroboscopic map s (3.7) possesses a unique fixed point x̄n ∈ Sn

for A ∈ (AR
n (d), A

L
n (d)). This fixed point undergoes a border collision bifurcation at A = AL

n(d)
and A = AR

n (d).
The values A0(d), A

L
n(d), and AR

n (d) define smooth curves fulfilling

lim
d→0

A0 = ∞,

lim
d→0

AR,L
n (d) = ∞.

Hence these curves go through the origin of the (d, 1/A)-parameter space. Moreover,

(3.17) lim
d→1

AR
n (d) = lim

d→1
AL

n(d), n ≥ 1,

D
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and this limit becomes the value of A for which

δ =
T

n
,

where δ is as defined in (3.4).
Proof. Let s− and s+ be as in (3.11) and (3.12):

s− = ϕ(T (1 − d); θ; 0),

s+ = ϕ(T (1 − d); 0; 0).

As given in Lemma 3.3, if the stroboscopic map exhibits a discontinuity, Σn ∈ (0, θ), then
these values coincide with the lateral images of Σn:

s(Σ−
n ) = s−,

s(Σ+
n ) = s+.

For 0 < d < 1 and n ≥ 1, let AC
n(d) be as in the proof of Proposition 3.2, i.e., the value

of A defined by the condition Σn = 0. By Lemma 3.2 and the implicit function theorem,
AC

n(d) is a smooth function of d. We begin by discussing the bifurcation sequence occurring
for some 0 < d < 1 and 0 < A < AC

1 (d). The sequence of bifurcations that we now describe is
illustrated in Figure 9 for a particular example.

First note that for A sufficiently small, [0, θ) = S0∪S1 and Σ1 > s− = s(Σ−
1 ). In this case

the graph of s is as shown in Figure 6(c) (for n = 3), and clearly the fixed point x̄0 contained
in S0 must exist (see Figure 5(c)). By Lemma 3.2, when A is increased, Σ1 decreases with
nonzero speed. Hence there exists a unique value of A = A0 such that Σ1 = s− = s(Σ−

1 ) (see
Figure 6(d) for Σ3). In other words, the fixed point x̄0 undergoes a border collision bifurcation
as it collides with the boundary Σ1 on its left (see Figure 5(d)). Moreover, by Lemma 3.2 and
the implicit function theorem, the equation Σ1 = s− defines a smooth function A0(d).

For A > A0(d) the map s is as shown in Figure 4(b), and the fixed point x̄0 no longer
exists. As A is further increased, Σ1 crosses s+ for some value A = AR

1 . For this value, the
fixed point x̄1 undergoes a border collision bifurcation as it collides with the boundary Σ1 on
its right (see Figures 5(a) and 6(a) for x̄2). Similarly as above, the equation Σ1 = s+ defines
a smooth function A = AR

1 (d), and for A > AR
1 (d) the fixed point x̄1 exists. Finally, for

A = AC
1(d) the map is continuous on the entire (0, θ) with fixed point x̄1.

We now repeat the same argument to show that the same bifurcation sequence occurs for
AC

n(d) < A ≤ AC
n+1(d), n ≥ 1. Indeed, for A > AC

n(d) but close to AC
n(d), we have Σn > s−.

In this case the graph of s is again as shown in Figure 6(c), and clearly the fixed point x̄n−1

contained in Sn−1 must exist (see Figure 5(c)). By Lemma 3.2, when A is increased, Σn

decreases with nonzero speed. Hence there exists a unique value of A = AL
n−1 such that

Σn = s− = s̃(Σ−
n ) (see Figures 5(d) and 6(d) for n = 3). For this value of A, the fixed point

x̄n−1 undergoes a border collision as it collides with the boundary Σn on its left. Moreover,
by Lemma 3.2 and the implicit function theorem, the equation Σn = s− = s(Σ−

n ) defines a
smooth function AL

n(d).
For A > AL

n−1(d) the map s is as shown in Figure 4(b), and the fixed point x̄n−1 no longer
exists. As A is further increased, there exists some value A = AR

n (d) for which Σn crosses s+,D
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as in Figure 6(a). For this value, the fixed point x̄n undergoes a border collision bifurcation as
it collides with the boundary Σn on its right (see Figure 5(a) for n = 3). Similarly as above,
the equation Σn = s+ = s(Σ+

n ) defines a smooth function A = AR
n (d), and for A > AR

n (d) the
fixed point x̄n exists. Finally, for A = AC

n(d) the map is continuous on the entire (0, θ) with
fixed point x̄n.

Finally, note that due to the fact that the lateral values of Σn by s (s− and s+) do
not depend on A and, by Lemma 3.2, Σn monotonically decreases with A, the bifurcations
described above, given by s(Σ±

n ) = s±, can occur only once if A is monotonically varied.
As will be shown in next section, the periodic orbits that exist in the intervals of the form

(AL
n−1(d), A

R
n (d)) are given by the period adding structure.

We now discuss the limiting values of the curves AR,L
n (d) when d → 0 and d → 1.

Let A0(d) be the curve where the fixed point x̄0 ∈ S0 undergoes a border collision. As
discussed above, this occurs when the fixed point x̄0 collides with the boundary:

ϕ(dT ; x̄0;A0) = θ,(3.18)

ϕ(T − dT ; θ; 0) = x̄0,

where ϕ(t;x;A) is the flow associated with system ẋ = f(x) + A. As the field f(x) + A
increases with A, ϕ(dT ;x;A) is a monotonically increasing function of A for A ∈ [A0, A

R
1 ) for

all x ∈ [0, θ). Hence, if d → 0, then A0 → ∞ in order to keep (3.18) satisfied. Therefore, the
curve defined by A0(d) goes through the origin of the (d, 1/A)-parameter space. The sequence
given in (3.16) implies that all the other bifurcation curves given by AR,L

n (d) also go through
this point.

We now focus on d → 1. Let A ∈ (AR
n (d), A

L
n (d)), and hence there exists a fixed point

x̄n ∈ Sn of s. In order to see (3.17) we will show that, if there exists such a fixed point, then
necessarily s(x) → x when d → 1; that is, if a fixed point exists, then the stroboscopic map s

tends to the identity when d → 1. If that is the case, then both bifurcations tend to occur at
the same time, and hence

AR
n (d)−AL

n(d) → 0,

and both limits exist, which proves (3.17).
To see that s tends to the identity when d → 1 if x̄n ∈ Sn, we first recall that for d = 1

system (2.1)–(2.3) becomes the autonomous system ẋ = f(x)+A plus the reset condition (2.3).
As A ∈ (AR

n (d), A
L
n (d)) is large enough to make the system exhibit spikes, if d = 1, there exists

only one periodic orbit with period δ = δ(A) defined in (3.4). Moreover, all points in [0, θ)
belong to this periodic orbit because of the reset. As a consequence, all initial conditions in
[0, θ) are fixed points of the time-δ return map, and this map is hence the identity.

We now write the conditions for the existence of the fixed point x̄n in terms of the flow:

ϕ(tn; x̄n;A) = θ,

ϕ(dT − tn − (n− 1)δ; 0;A) = x′,

ϕ(T − dT ;x′; 0) = x̄n.

Clearly, when d → 1, x′ → x̄n and A tends to a value such that T is a multiple of δ(A); indeed,

nδ(A)T → T.D
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As a consequence, for this limiting value of A, the time-T return map, s, also tends to be the
identity in Sn.

3.3. Period adding structures. In this section we study the invariant objects (periodic
orbits) located in the regions in the (d, 1/A)-parameter space nested in between fixed points
of the stroboscopic map (white regions in Figure 1(a)).

As announced in section 2, these are organized by period adding structures. Using the
background on this topic provided by Theorem 2.1, this is a direct consequence of the following
proposition, which states that the stroboscopic map (3.7) can be written as the normal form
given in (2.7) for parameter values between two consecutive regions where fixed points exist.

We recall that Theorem 2.1 needs the piecewise-defined map (2.7) to be contracting in
both domains. Lemma 3.4(ii) tells us that this will occur if n is large enough.

Proposition 3.4. Let

(3.19)
μ : [0, 1] −→ R

2,
λ �−→ (d(λ), B(λ))

be a C∞ parametrization of a curve in the (d, 1/A)-parameter space such that μ(0) = (d0, B0)
and μ(1) = (d1, B1), fulfilling

di ∈ (0, 1),

B0 =
1

AL
n(d0)

,

B1 =
1

AR
n+1(d1)

for some n > 0, and
B′(λ) < 0, λ ∈ (0, 1).

Let sλ be the map obtained by applying the reparametrization μ to s. Then, if n is large
enough, the bifurcation diagram associated with the map sλ for λ ∈ [0, 1] follows a period
adding structure as described for map (2.7).

Proof. We show that the map s can be written in the form of map (2.7), fulfilling the
conditions of Theorem 2.1.

After performing the reparametrization λ �−→ (d,B) given by the curve (3.19), we have
that Σn(λ) ∈ [0, θ) for all λ ∈ [0, 1]. Hence, the change of variables

x̃ �−→ x− Σn(λ)

is well defined and makes the map s̃λ(x̃) := s(x̃ + Σn(λ)) − Σn(λ) undergo a discontinuity
at x̃ = 0 independently of λ. Provided that n is large enough and using Lemma 3.4, the
stroboscopic map s̃λ is continuous, increasing, and contracting in [0, θ−Σn(λ)) and [−Σn(λ), 0)
for λ ∈ [0, 1]. Hence, the map s̃λ(x̃) is of type (2.7) and satisfies (2.9) in its domain, which is
enough, as argued in Remark 2.1.

As argued in the proof of Proposition 3.3, the map s̃λ(x̃) undergoes a negative gap at
x̃ = 0 for λ ∈ [0, 1]:

(3.20) s̃λ(0
−) > s̃λ(0

+).D
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For λ = 0 and λ = 1, the fixed points x̄n−1 −Σn(0) and x̄n −Σn(1) of the map s̃λ(x̃) undergo
border collision bifurcations. This implies

s̃0(0
−) = 0,

s̃1(0
+) = 0.

Hence, condition C.3 of Theorem 2.1 is satisfied. Recalling the negative gap (3.20), the map
s̃λ(x̃) fulfills

s̃λ(0
+) < 0 ∀λ ∈ (0, 1),

s̃λ(0
−) > 0 ∀λ ∈ (0, 1),

and hence C.1 in Theorem 2.1 is satisfied, too.
From the fact that B′(λ) < 0, the reparametrization is such that the parameter A mono-

tonically decreases with λ. From Lemma 3.2 we get that Σn(λ) also decreases monotonically
with λ, and hence C.2 in Theorem 2.1 is also satisfied.

Finally, we can apply Theorem 2.1 for the normal form map (2.7) to obtain that the
bifurcation scenario exhibited by the map s̃λ (and thus by the original map sλ) when varying
λ is given by the period adding structure.

By combining the previous result and the bifurcation scenario described for the normal
form map (2.7), we get that the regions in parameter space between curves of the form
(d, 1/AL

n (d)) and (d, 1/AR
n+1(d)) are covered by an infinite number of periodic orbits with ar-

bitrarily high period following the period adding structure described in section 2. In addition,
by combining it with Lemma 3.3, we get the full description of the bifurcation scenario for
system (2.1)–(2.3) in the (d, 1/A)-parameter space, as described in section 2.

3.4. Symbolic sequences, firing number, and firing rate. We now introduce the symbolic
dynamics described in section 2. Let (x1, . . . , xn) be an n-periodic orbit located in the region
in parameter space between the curves (d, 1/AL

n ) and (d, 1/AR
n+1). We then assign to this orbit

the symbolic sequence given by the encoding

xi → L if xi < Σn,

xi → R if xi ≥ Σn.

Note that xi < Σn and xi ≥ Σn correspond to xi ∈ Sn−1 and xi ∈ Sn, respectively. Hence,
recalling the definition of the sets Si provided in (3.8), when introducing the encoding (2.8),
the symbols L and R have to be interpreted as the system spiking n and n+ 1 times for one
iteration of the stroboscopic map, respectively. This determines the so-called firing number,
introduced in [KHR81] as follows.

Definition 3.1. Let s be the total number of spikes performed by a p-periodic orbit of the
stroboscopic map s when iterated p times, p ∈ N; then we define the firing number as

(3.21) η =
s

p
.

Provided that these periodic orbits are attractive, this number becomes the asymptotic
average number of spikes per iteration of the stroboscopic map.D
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Note that this quantity can be computed from the symbolic sequence. Let σ be a p-periodic
orbit for parameter values located between the curves 1/A = 1/AL

n (d) and 1/A = 1/AR
n+1(d)

whose symbolic sequence contains m R′s and k L′s (k = p − m). Then, the firing number
becomes

η =
nk + (n+ 1)m

p
= n+

m

p
.

As explained in section 2, the rotation numbers associated with the periodic orbits in the pe-
riod adding structure can be computed by dividing the number of R′s symbols in its symbolic
sequence by its total period,

ρ =
m

p
.

Hence, the firing number can be related with the rotation number as

(3.22) η = n+ ρ,

where n is such that the periodic orbit steps on each side of the boundary Σn.
As also explained in section 2, the rotation number is organized by the Farey tree structure

shown in Figure 3(a) when parameters are varied from the bifurcation curve 1/A = 1/AL
n (d)

toward 1/A = 1/AR
n+1(d) along curves such as that given in Proposition 3.4. Hence, it follows

a devil’s staircase from 0 to 1. As a consequence, the firing number follows a devil’s staircase
from n to n+ 1 when parameters d and A are varied as mentioned.

Taking into account that the stroboscopic map consists of flowing system (2.1)–(2.3) for
a time T , the firing number allows one to compute the firing rate associated with the corre-
sponding periodic orbit as

r =
η

T
.

This becomes the asymptotic number of spikes per unit time.
Note that, provided that these periodic orbits are attracting, r becomes the asymptotic

firing rate defined in (2.6),

r = lim
τ→∞

#(spikes performed by φ(t;x0) for t ∈ [0, τ ])

τ
,

which does not depend on x0 ∈ [0, θ).
Using the relation given in (3.22), the firing rate also follows a devil’s staircase from n/T to

(n+1)/T when the parameter values are varied through curves such as that in Proposition 3.4
between the bifurcation curves 1/A = 1/AL

n (d) and 1/A = 1/AR
n+1(d), respectively.

4. Examples. In this section we illustrate the results presented so far in two different
examples. We consider a system of the type

ẋ = f(x) + I(t),

with I(t) a T -periodic input as defined in (2.2) and three different types of functions for f(x)
satisfying conditions H.1–H.2. The first example consists of a linear system, leading to the
so-called linear integrate-and-fire system:

(4.1) f1(x) = ax+ b.D
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1408 A. GRANADOS, M. KRUPA, AND F. CLÉMENT

Figure 7. Bifurcation diagram for the map s for T = 1.9, a = −0.5, b = 0.2 associated with system (2.1)–
(2.3) for the linear system (4.1). The colors refer to the periods of the periodic orbits found by simulating the
system. Periodic orbits are shown only up to period 20 for clarity reasons. The T -periodic orbits (fixed points
of s) for parameter values corresponding to points B and C, as well as their bifurcations (B2 and B3), are
shown in Figure 9. The eight nonlabeled points correspond to 5T -periodic orbits with four different symbolic
sequences. Those for the four points with small values of d are shown in Figure 10, and those with large values
of d are shown in Figure 11.

(a) (b)

Figure 8. (a) Periods of the periodic orbits found along a line such as that shown in Figure 7. (b) Firing
number associated with such periodic orbits.

Taking the threshold θ = 1, conditions H.1–H.2 are satisfied if a < 0 and −b/a ∈ (0, 1). In
Figure 7 we show the existence of periodic orbits in the (d, 1/A)-parameter space, which is as
predicted. In Figure 8(a) we show the periods of the periodic orbits found along the line drawn
in Figure 7, although the bifurcation scenario is topologically the same for any other curveD
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(b)

0

0

0.5
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x(t)

(c)

0

0

0.5

0.5

1.5

1
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θ

t
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(d)

Figure 9. Periodic orbits for the labeled points in Figure 7. (a) Periodic orbit with no spikes (fixed point
x̄0); (b) left bifurcation of the fixed point, x̄0 = Σ1; (c) right bifurcation of the fixed point, x̄1 = Σ1; (d) periodic
orbit spiking once.

transversally crossing the colored regions. As one can see in Figure 8(a), along such a curve
there exist regions where one finds only T -periodic orbits (fixed points of the stroboscopic
map, period 1). These are the black regions in Figure 7, for example containing the points
as B, C, D, and E. The periodic orbits for the parameter values corresponding to B and
C are shown in Figures 9(a) and 9(d), respectively. Note that their associated firing number
defined in (3.22) (average number of spikes per iteration of the stroboscopic map) is 0 and 1,
respectively.

As given by Propositions 3.2 and 3.3, there exists an infinite number of regions, accumu-
lating at the horizontal axis 1/A = 0, for which one finds T -periodic orbits with arbitrarily
large integer firing numbers. This can be seen in Figure 8(b) for the points D and E and
successive regions containing T -periodic orbits (period one Figure 8(a)). As one can see in
Figure 8(a), the period adding between the points B and C is not complete, as there are
some periodic orbits “missing.” This is due to the fact that, for the chosen parameter values,D
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t
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Figure 10. Period-5 periodic orbits with different symbolic sequences and firing number: L4R η = 1/5 (a),
L2RLR η = 2/5 (b), LRLR2 η = 3/5 (c), and LR4 η = 4/5 (d). Parameter values for which these periodic
orbits exist are marked with points in Figure 7 and correspond to small values of the duty cycle d.

the map s is not contracting in [Σ1, θ), and hence these periodic orbits are not unique and
unstable (see [GAK14]). However, as stated in Lemma 3.4, when A (or equivalently n) is
large enough, s becomes contracting, and the period adding is complete as these parameters
are further varied along the curve shown in Figure 7.

The two T -periodic orbits found in B and C undergo border collision bifurcations at the
points B2 and B3 labeled in Figure 7. The periodic orbits at the moment of the bifurcation
are shown in Figures 9(b) and 9(c), respectively. This occurs similarly for all other T -periodic
orbits with higher firing number (see Proposition 3.3 for more details). In between points B
and C, C and D, D and E, etc., a period adding bifurcation occurs; that is, there exists an
infinite number of periodic orbits whose periods, symbolic sequences, and rotation numbers
are organized by the Farey tree structure shown in Figure 3(a). After applying the symbolic
encoding (2.8), the symbolic sequences and periods are obtained by successive concatenation
and addition, as shown in Figure 3(a) and explained in section 2. In Figures 10 and 11 weD
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Figure 11. Period 5 periodic orbits with different symbolic sequences and firing number: L4R η = 1/5 (a),
L2RLR η = 2/5 (b), LRLR2 η = 3/5 (c), and LR4 η = 4/5 (d). Parameter values for which these periodic
orbits exist are marked with points in Figure 7 and correspond to large values of the duty cycle d.

show, for different parameter values, the four periodic orbits with period 5 located in the
adding structure between points B and C, which correspond to the symbolic sequences L4R,
L2RLR, LRLR2, and LR4 (see the Farey tree in Figure 3(a)). The parameter values used
are given by the points marked in Figure 7 for large and small d. Note how the L symbol
corresponds to an iteration of the stroboscopic map without exhibiting any spike, whereas for
R one spike occurs.

The firing number associated with the periodic orbits is related to their rotation number
through (3.22), and it is shown in Figure 8(b) for the periodic orbits found along the line
labeled in Figure 7. According to Proposition 3.4 (see section 3.4), the firing number is a
strictly increasing and unbounded devil’s staircase as a function of the parameters.

Finally, we show that the same results apply for system (2.1)–(2.3) with f(x) not nec-
essarily linear as long as conditions H.1–H.2 are satisfied. To illustrate this we choose twoD
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Figure 12. Functions f2 and f3 given in (4.2). x̄ is the attracting equilibrium point.

different functions for f :

(4.2)
f2(x) = a2 (x− b2)

5 − c2x,

f3(x) = − arctan(a3(x− b3)).

With θ = 1, we choose parameter values in order to make the functions f2 and f3 satisfy
conditions H.1–H.2:

a2 = −10,

b2 = 0.7,

c2 = 0.01,

a3 = 100,

b3 = 0.1.

These two functions are shown for these parameter values in Figure 12. One can see that
the first case corresponds to a weak equilibrium point, whereas the second corresponds to a
robust one. This leads to slow and fast subthreshold dynamics, respectively.

The bifurcation structures in the (d, 1/A)-parameter space, shown in Figure 13, are as
predicted. The bifurcation scenarios along curves transversally crossing the bifurcation curves
are equivalent to those for the first example, as predicted by our results, and we do not show
further details.

The bifurcation scenario in the (d, 1/A)-parameter space for the weak equilibrium point is
mainly covered by periodic orbits (bursting spiking), whereas in the second case, the spiking
dynamics is mainly given by fixed points of the stroboscopic map (tonic spiking). This is
because the subthreshold dynamics for f2 is much slower than for f3. This can be seen
in Figure 14, where we show for both systems a 5-periodic orbit with symbolic sequence
LRLR2. Note that the value of T for f3 in Figure 13(b) had to be reduced with respect to
Figure 13(a) in order to observe bursting spiking (periodic orbits) because, due to the fast
subthreshold dynamics, for the same value of T as for f2 one basically observes tonic spiking
(fixed points). When reducing the period, the fast convergence of the subthreshold dynamics
for f3 is compensated, and hence the regions in parameter space locating fixed points becomeD
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(a) (b)

Figure 13. Bifurcation scenarios for the second and third examples given in (4.2). (a) and (b) correspond
to f2 and f3, respectively. The values of the period T have been T = 1 for (a) and T = 0.5 for (b).

0

0
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x(t)

(a)

0

0
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1
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t
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Figure 14. Period-5 periodic orbits with symbolic sequence LRLR2 and firing number η = 3/5 for the
examples given in (4.2). (a) corresponds to f2 and (b) to f3. Parameter values are 1/A = 0.79 and 1/A = 0.2
for (a) and (b), respectively, and d = 0.5 in both cases.

broader and more easily observable. We refer the reader to [GK14] for a complete study of
the behavior of the bifurcation curves under frequency variation of the input.

5. Discussion. Hybrid systems with resets are a simplified version of excitable systems
and are widely used in the modeling of biological systems, e.g., in the context of neuronal ac-
tivity and secretion of hormones. Typically, as such systems undergo discontinuities (spikes),
they are studied by means of firing maps, or impact maps, i.e., Poincaré maps defined using
the threshold as a Poincaré section. In this work we have studied generic periodically forced
hybrid systems under the assumption of monotonicity and contracting dynamics. The main
innovation of this paper was to use the stroboscopic (time-T return map) rather than the
return map. We have obtained a complete description of the bifurcation structure underlyingD
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the dynamics, showing the existence of a globally attracting periodic orbit for every parameter
value as well as giving a description of the transitions between different regions of stable peri-
odicity. We have also introduced the rotation number and shown that its typical dependence
on parameters is a devil’s staircase. Finally, we defined the firing rate in the context of these
systems and related it to the rotation number.

It is important and interesting to compare the method developed in this paper with the
approach based on the firing map. The main reason the firing map has been the tool of
choice is that in certain contexts it becomes a regular map; however, the analysis relies on
explicit computation of the firing times, and hence this method may not be suitable to provide
general results that can be systematically applied. Firing maps become even more difficult to
use in the presence of time dependent periodic forcings, as one needs to check for congruency
between spiking times and the period of the forcing.

The property of smoothness, which is the main advantage of the firing map, holds auto-
matically for systems in one dimension, as the threshold is a real number which is identified
with a different real number by means of the reset. However, in higher dimensions (when
considering dynamical adaptation currents or dynamical thresholds), the threshold becomes a
codimension-one manifold, and one can find much richer dynamics. In fact, the firing map may
exhibit discontinuities near those points where the flow exhibits tangencies with the thresh-
old. As shown in [CTW12, JMB+13] for two-dimensional linear systems that can be solved
explicitly, the firing map may exhibit opposite slopes on both sides of such discontinuities. In
this case, one can apply the results for piecewise-smooth maps given in [AGS11] to obtain a
full description of the bursting spiking dynamics (periodic orbits of the map) and its symbolic
dynamics.

The advantage of using the stroboscopic map when considering periodically forced systems
with resets is that, after proper reparametrizations, it can be classified as a discontinuous
map with positive slopes near the discontinuity. Such maps have been extensively studied
and are well understood [CGT84, GGT84, GIT84, GPTT86, Gam87, PTT87, TS86, GGT88,
GT88, LPZ89, AS06] (see [GAK14] for a review). This allows us to provide general results
that can be systematically applied to systems satisfying generic conditions. Moreover, the
whole analysis of the period adding bifurcation structures comes from understanding only the
bifurcations undergone by fixed points and is independent of the number of spikes exhibited by
the periodic orbits corresponding to these fixed points for the time continuous system. Finally,
the presented framework is well suited for generalizations of the considered systems. For
example, a similar analysis can be done for general periodic forcings, systems with expansive
subthreshold dynamics, or even systems in higher dimensions, as could be the case when
considering a dynamical threshold.

Acknowledgment. We would like thank Jean-Marc Gambaudo for his helpful comments
on discontinuous maps.
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