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Abstract In this article, we study canard solutions of the forced van der Pol equation
in the relaxation limit for low-, intermediate-, and high-frequency periodic forcing. A
central numerical observation made herein is that there are two branches of canards
in parameter space which extend across all positive forcing frequencies. In the low-
frequency forcing regime, we demonstrate the existence of primary maximal canards
induced by folded saddle nodes of type I and establish explicit formulas for the para-
meter values at which the primary maximal canards and their folds exist. Then, we turn
to the intermediate- and high-frequency forcing regimes and show that the forced van
der Pol possesses torus canards instead. These torus canards consist of long segments
near families of attracting and repelling limit cycles of the fast system, in alternation.
We also derive explicit formulas for the parameter values at which the maximal torus
canards and their folds exist. Primary maximal canards and maximal torus canards
correspond geometrically to the situation in which the persistent manifolds near the
family of attracting limit cycles coincide to all orders with the persistent manifolds
that lie near the family of repelling limit cycles. The formulas derived for the folds
of maximal canards in all three frequency regimes turn out to be representations of a
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single formula in the appropriate parameter regimes, and this unification confirms the
central numerical observation that the folds of the maximal canards created in the low-
frequency regime continue directly into the folds of the maximal torus canards that exist
in the intermediate- and high-frequency regimes. In addition, we study the secondary
canards induced by the folded singularities in the low-frequency regime and find that
the fold curves of the secondary canards turn around in the intermediate-frequency
regime, instead of continuing into the high-frequency regime. Also, we identify the
mechanism responsible for this turning. Finally, we show that the forced van der Pol
equation is a normal form-type equation for a class of single-frequency periodically
driven slow/fast systems with two fast variables and one slow variable which possess
a non-degenerate fold of limit cycles. The analytic techniques used herein rely on
geometric desingularisation, invariant manifold theory, Melnikov theory, and normal
form methods. The numerical methods used herein were developed in Desroches et
al. (STAM J Appl Dyn Syst 7:1131-1162, 2008, Nonlinearity 23:739-765 2010).

Keywords Folded singularities - Canards - Torus canards - Torus bifurcation -
Mixed-mode oscillations
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1 Introduction

The forced van der Pol (fvdP) equation is a fundamental model for oscillatory processes
in physics, electronics, biology, neurology, sociology, and economics. Possessing
strong nonlinear damping effects, it is the prototype of a forced relaxation oscillator,
exhibiting slow and fast timescales, see Bold et al. (2003), Cartwright and Littlewood
(1945), Cartwright (1950), Flaherty and Hoppensteadt (1978), Haiduc (2009), Han
and Bi (2012), Levi (1981), Levinson (1949), Sekikawa et al. (2005), van der Pol
(1920), and van der Pol (1927). The equations may be formulated as

=y [,
y =e(—x +a+bcosh), (1)
0 = w,

where the prime denotes the derivative with respect to the fast time variable 7, f(x) =
%x3 —x,and 0 < ¢ « 1. The external signal, a + b cos @, models a time-periodic
driving force with drive frequency w > 0. Throughout this article, we will work with
the form of the system given by (1), as it allows us to explore the full range of forcing
frequencies @ > 0.

A number of detailed studies of the fvdP equation (1) have been carried out in the
low-frequency forcing regime, w = O(¢), see Bold et al. (2003), Guckenheimer et al.
(2003), Han and Bi (2012), and Szmolyan and Wechselberger (2004). We cite Bold
et al. (2003) in particular, which presents a detailed analysis of the folded saddle sin-
gularities and their attendant canards. In the context of excitable systems (in particular,
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neuronal models), the folded saddle maximal canard plays the role of an excitability
threshold manifold, locally dividing trajectories between those that jump at the fold
to a different attracting manifold and those that do not Mitry et al. (2013), Wech-
selberger et al. (2014). This is also true in planar neuronal systems where solutions
containing maximal canard segments correspond to excitability thresholds both in the
case of type I neurons (integrators) and type II neurons (resonators) (Desroches et al.
2013; Izhikevich 2000). More generally, the canards induced by folded singularities
(of node, saddle, and saddle-node types) have also been studied in models of neuronal
dynamics (Rotstein et al. 2008; Rubin and Wechselberger 2008; Teka et al. 2011) and
in many other systems, see for example Benoit (1990), Brgns et al. (2006), Desroches
et al. (2008), Desroches et al. (2012), Krupa and Wechselberger (2010), Vo and Wech-
selberger (2015), Wechselberger (2005), Wechselberger (2012), Wechselberger et al.
(2014).

In this article, we examine the fvdP equation (1) in three different regimes of forcing
frequencies: low frequency (v = O(g)), intermediate frequency (w = O(+/¢)), and
high frequency (w = O(1)). In each regime, we study the canard solutions that the
fvdP equation (1) exhibits.

We begin in the low-frequency regime. First, we briefly apply the theory of folded
singularities to (1), to identify the different types of folded singularities that it exhibits
in this regime. We place special emphasis on folded saddle-node singularities of type I
(FSN I), which are known to generate a number of different types of canard solutions,
see Sect. 2.

The graph of the fast nullcline, y = f(x), of system (1) with ¢ = 0 plays a central
role in understanding the system dynamics. We are especially interested in the middle
repelling branch and the attracting branch on the right, respectively, of the graph. Let S,
denote the two-dimensional manifold formed by rotating the (middle) repelling branch
through one complete revolution in the angle 6 : [0, 2), and similarly let S, be the
two-dimensional manifold formed by rotating the (right) attracting branch through
one complete revolution in 6. In the low-frequency regime of (1), Fenichel theory
(Fenichel 1979; Jones 1995) guarantees that, when ¢ is sufficiently small, there exist
two-dimensional, locally invariant manifolds S; and S/ near S, and S,, respectively,
away from the fold regions. In the low-frequency forcing regime, these persistent
manifolds are referred to as slow manifolds, since the dynamics on them is slow in y
and 6.

Canards of folded singularities are orbits that have a long segment close to SZ, pass
through a neighbourhood of the folded singularity, and then have a long segment near
S¢. These canards are divided into two classes: primary and secondary. There are two
primary canards of folded singularities: strong and weak, both of which pass directly
through a neighbourhood of the folded singularity. The weak canard plays the role
of the axis of rotation for the secondary canards, which oscillate in a neighbourhood
of the folded singularity. Secondary canards are indexed by the number of loops they
make around the weak canard and by the value of the y-intercepts of the solutions
during the nearly horizontal jumps that occur from a neighbourhood of Sy back to a
neighbourhood of S/. The lengths of the canard orbit segments on S; depend on the
parameter values; and there are curves of parameter values along which the segment
near S¢ has maximal length, going all the way up to the other fold curve. These canards
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Fig. 1 a Segment of a primary maximal canard solution of (1), and b segment of a maximal torus canard
solution of (1). Both have long segments near the family of attracting limit cycles (outer portion of the
green surface) and near the family of repelling limit cycles (inner portion of the green surface). Here,
a=0.997,b=0.9%, ¢ =0.02,anda ® = 0.001 andb w = 0.3

are referred to as maximal canards; see Fig. 1a for a representative primary maximal
canard. They are determined geometrically by the parameter values for which S? and
S¢ agree to all orders in ¢, in a manner analogous to the maximal limit cycle canards
in the classical, planar van der Pol equation, recall (Benoit et al. 1981; Diener 1984,
Eckhaus 1983). Within each family of canards, there is one maximal canard.

The following is the first main result of this article:

Theorem 1.1 (Low-frequency forcing) Let w = ¢ w, where @ = O(1), and let b =
O(J/€). Then, there exists an g > 0 such that for all0 < & < &g, there are two curves
in the (a, w) parameter plane given by

1—S4p il )
= _—— X —_——
a 8 exXp 2 s

emanating from the points (o, a) = (0,1 — % =+ b), along which the system (1) has
folds of primary maximal canards. Moreover, for each O(1) value of @, the system
(1) has two primary maximal canards for every value of a in the interval between the
points on these fold curves. Finally, there are no primary maximal canards for values
of a outside the closures of these intervals.

This first theorem is established by using the geometric desingularisation method,
also known as the blow-up method (Dumortier and Roussarie 1996, 2001; Krupa and
Szmolyan 2001), to inflate the FSN I points into hyperspheres and then by employing
invariant manifold theory and Melnikov theory in the appropriate coordinate charts,
see Sect. 3.

Next, we show that system (1) has torus canards both in the intermediate-frequency
forcing regime, in which (1) has three timescales, with x fast, 6 intermediate, and
y slow, and in the high-frequency forcing regime in which (1) is a two-fast (x, 0)
and one-slow system (y). Torus canards are a relatively new type of canard solution
discovered in a model of neuronal activity in Purkinje cells (Kramer et al. 2008). They
consist of long segments near families of attracting and repelling limit cycles of the fast
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system, in alternation. Torus canards have recently been shown to exist in a broad array
of models, including in three models of neuronal bursting, see Burke et al. (2012): the
Hindmarsh—Rose model, the Morris—Lecar—Terman system, and the Wilson—-Cowan—
Izhikevich equations; in a model of elliptic bursters, where the torus canards are rotated
versions of limit cycle canards of a planar system (Izhikevich 2001); in a rotated van
der Pol-type model system (Benes et al. 2011); as well as more recently in a model of
respiratory rhythm generation in a pre-Botzinger complex (Roberts et al. 2014). The
significance of torus canards in these neuronal models is that they play a central role
in the transition between periodic spiking and bursting of different types.

In the intermediate- and high-frequency regimes of (1), Fenichel theory (Fenichel
1979; Jones 1995) also guarantees that, when ¢ is sufficiently small, there exist two-
dimensional, locally invariant manifolds near S, and S,, away from the fold regions.
We again denote these by S; and S;, and label them as persistent manifolds. However,
it is crucial to observe that these persistent manifolds are no longer slow manifolds
in these regions. Instead, the orbits of (1) on these persistent manifolds exhibit two
timescales, with fast rotation due to the limit cycles, as well as slow drift in the vertical
direction, down S’ and up along S?.

Torus canards are orbits of (1) in the intermediate- and high-frequency regimes that
have long segments near S5, spiral through a neighbourhood of the fold curve of limit
cycles, and then have a long segment near S:. The lengths of time that torus canards
spiral around near S’ and S; depend on the system parameters, and for system (1)
there are curves of parameter values along which the time spent near S¢ is maximal,
with the orbits spiralling all the way up SZ. These are defined to be maximal torus
canards, in analogy with the maximal limit cycle canards of the unforced van der Pol
oscillator. A representative maximal torus canard is shown in Fig. 1b.

For system (1) in the intermediate-frequency regime, we prove the following the-
orem:

Theorem 1.2 (Intermediate-frequency forcing) Let w = /e, where Q = O(1), and
let b = O(¢). Then, there exists an gg > 0 such that for all 0 < & < g, there are two
curves in the (a, 2) parameter plane given by

1—S4p Q2 3)
a=1—-+xbexp|——]).
8 P\

along which the system (1) has folds of maximal torus canards. Moreover, for each
fixed O(1) value of , the system (1) has two maximal torus canards for every value
of a in the interval between these fold curves, and none outside the closure of these
intervals.

This theorem is also established using geometric desingularisation; however, in this
regime, we inflate the circular fold curve along which the attracting and repelling limit
cycles meet into a two-torus, rather than the FSN I points. See Sect. 4.

Then, for the high-frequency regime, we establish:

Corollary 1.3 (High-frequency forcing) Let @ = O(1), and let b = O(g). Then,
there exists an o > 0 such that for all 0 < & < &, there are two curves in the (a, ®)
parameter plane given by
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1 ° +b w? 4)
a=1-——- exp{l——1-
8 P\ 2¢

along which the system (1) has folds of torus canards. Moreover, there exists a pair of
torus canards for each parameter value in the interval between these fold curves.

We note that the presence of torus canards in this type of fast—slow system is
signalled by the existence of a fold of limit cycles of the fast system, here at (x, y) =
1, — %), together with a nearby torus bifurcation in the full system, here at

, b? &?

T @R ©)

1—a

See “Appendix 1. These two triggering mechanisms arise ubiquitously in fast—slow
systems with two or more fast variables.

Having established these theorems for the existence of the primary maximal canards
and the torus canards, as well as their folds, we now analyse the relationship between
these results. Plainly, the formulas for the curves of folds (2), (3), and (4) in the three
different regimes are all representations of the same formula,

€ w?
=1—-=-=xb -, 6
a 3 exp( 28) 6)

in the respective frequency regimes. The exponential term has magnitude b (which
is O(4/¢)) and is slowly varying with @ in the low-frequency regime (Theorem 1.1),
small amplitude (b = O(¢)) and varying with O(1) frequency €2 in the intermediate-
frequency regime (Theorem 1.2), and exponentially small in € in the high-frequency
regime (Corollary 1.3).

The analysis in all three regions shows that the values of the parameter a for which
the canards exist in between the fold curves may similarly be summarised succinctly
in one formula:

= 1-% —beos(l o 7
a= —3 cos( o)exp(—ﬁ). (7)

Here, 6) is an arbitrary phase, and the magnitude and dynamics of the exponential
term are also as discussed above.

It is also of interest to observe that, in the limit of @ — oo, formulas (6) and (7)
become a — a. := 1 — g, which corresponds exactly to the leading order locations
of the maximal limit cycle canards in the planar vdP equation, see for example Krupa
and Szmolyan (2001). Therefore, as expected, for sufficiently high-frequency forcing,
the effect of the forcing averages out to this order, and (1) behaves like the classical
planar vdP equation. In this limiting regime, the torus canards of (1) appear to be
rotated copies of the limit cycle canards of the planar vdP.

With the above analytical results in hand, we turn next to the results of numerical
continuations which confirm that the curves of the folds of primary strong canards
observed in the low-frequency regime continue directly to the curves of the folds
of torus canards discovered in the intermediate- and high-frequency regimes. This is
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Fig. 2 Curves of folds of maximal canards in the (@, a) plane as obtained from (6) (thin red curves) and
two-parameter numerical continuation (thick blue curves) for e = 0.0l and ab = 0.01; b b = 0.02; ¢
b = 0.035]; and d b = 0.1. For b = O(¢) (a—c), there is good agreement between theoretical (red) and
numerical (blue) results over the entire range of forcing frequencies, including for both the primary maximal
canards which exist for @ = O(g) and the maximal torus canards which exist for ® = O(1). Note that the
scales in a—c are the same. For b = O(/¢) (d, in which the vertical scale is different), we find that the
numerical continuation terminates when o is no longer O(¢) (Color figure online)

illustrated in Fig. 2, which also shows that the agreement between the formulas and the
numerical continuation results is excellent within the parameter regions stated in the
theorems. We note that the theory does not appear to extend outside of these regions,
and preliminary numerical continuation results reveal different dynamics there. Over-
all, then, (6) and (7) together with the numerical continuations will directly imply
that the primary strong canards, which exist in the low-frequency forcing region, con-
tinue naturally to the branches of torus canards, which exist in the high-frequency
regime, where the folded singularities cease to exist, with the transition happening in
the intermediate-frequency regime. Understanding the continuation dynamics of these
curves is one of the main results of this article. Moreover, the results here will help
shed light on other models with torus canards. In particular, we observe that numerical
simulations of a rotated van der Pol-type model exhibit the same continuation of the
maximal canards across the entire range of forcing frequencies, see Figure 5 in Benes
et al. (2011). Numerical continuations in other neuronal (or neural) models (Burke
et al. 2012) show similar phenomena.
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Fig. 3 Curves of folds along the 1.005
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In this article, we also study the secondary canards of (1). Secondary canards lie
near the primary strong canard for most of their lengths and make a number of small
loops around the weak canard, which is also the axis of rotation. We numerically
continue the branches of maximal secondary canards of (1) that are created by the
folded singularities in the low-frequency regime. In contrast to the primary canards,
the secondary canards turn around well before they reach the high-frequency regime,
see Fig. 3. Also, we identify the mechanisms which cause the branches to turn. See
Sect. 5.

To conclude this article, we demonstrate that (1) serves as a local normal form for
slow/fast systems with one slow variable and two fast variables in which the fast sub-
system possesses a non-degenerate fold of limit cycles and in which the slow system is
subject to time-periodic forcing. These fast—slow systems exhibit torus canard explo-
sions, just as shown here for the fvdP equation (1), and one may therefore directly
conclude, by applying the same techniques used herein, that the folds of their canards
behave in a similar fashion, see Sect. 6.

Throughout this article, we use the numerical method developed in Desroches et al.
(2008, 2010) to find the persistent invariant manifolds and the curves of maximal
canards that lie in their intersections. This method, which uses the AUTO continuation
software (Doedel et al. 2007), turns the problem of finding the invariant manifolds of
slow/fast systems into a boundary value problem for system (1) with the integration
time included as a parameter. Then, the parametrised families of solutions of the two-
point boundary value problems are continued. This allows to integrate in positive and
negative time using pseudo-arclength continuation, approximating the orbit segments
of solutions of system (1) subject to particular boundary conditions by orthogonal
collocation, which is very well suited to multiple time scale vector fields (see Desroches
et al. 2012).

The outline of the article is as follows. In Sect. 2, we consider system (1) with low-
frequency forcing, @ = O(e) and apply canard theory to find the associated primary
and secondary canards of folded singularities. In Sect. 3, we prove Theorem 1.1,
establishing the existence of the primary maximal canards induced by FSN I points, and
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the associated fold curves, including the derivations of (2) and (7) for system (1) in the
low-frequency region. We then turn to the cases of intermediate- and high-frequency
forcing in Sect. 4, where we study the torus canards of (1). We prove Theorem 1.2 and
Corollary 1.3, establishing the existence of the maximal torus canards and their fold
curves in these regimes, as given by the formulas (3) and (4). This shows analytically
that the curves of folds of the primary maximal canards, which are born in the low-
frequency regime, continue for all @ > 0 into the fold curves of the maximal torus
canards, as shown in Fig. 4. We also observe that the analytically derived formulas and
the curves obtained in the numerical continuations agree over the entire range of forcing
frequencies. Then, in Sect. 5, we numerically continue the folds of secondary canards

w = 0.001

w = 0.01

w = 0.02

0.99}

o
<L
—

w = 0.30

w=20.10

’/‘ Yors

Fig. 4 Two-parameter continuation of folds of primary maximal canards of a folded saddle node (type
I) for ¢ = 0.01 and b = 0.01. Orbit segments are plotted in ‘Cartesian’ coordinates (u,v,y) =

(xcos@,xsinb, y)
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and identify the mechanism by which they turn around well before they reach the high-
frequency regime. Also, we analyse how the curves of the folds of secondary canards
induced by folded nodes change as the parameter b is varied, up to and including
b = O(1), and hence as the distance between the folded node and the folded saddle is
varied. The final main result of this article is presented in Sect. 6. We demonstrate that
(1) may be considered as a local normal form for some generic fast—slow systems that
have a fold of limit cycles and that undergo a torus canard explosion. In “Appendix
17, we prove, using second-order averaging, the existence of a torus bifurcation in (1)
and calculate the locus (5) for this bifurcation in parameter space.

2 Low-Frequency Forcing: Canards of Folded Singularities, Especially
of FSN I Points

In this section, we present a brief review and analysis of the folded singularities
that system (1) possesses in the regime of low drive frequency, i.e. w = € @, where
w = O(1) and 0 < ¢ < 1. Readers familiar with the theory of folded singularities
and their canards may proceed to Sect. 3. In this regime, (1) is

xX'=y—f),
y =g&(—x +a+bcosh), (®)
0" =cw.

It is a one-fast/two-slow problem with fast variable x and slow variables (y, 6). We
analyse the reduced dynamics associated with (8) and derive the desingularised vector
field on the critical manifold. Then, we identify the canards of the folded singularities.

2.1 The Layer and Reduced Systems
Taking the singular limit ¢ — 0 in (8), one finds the 1D layer problem
X =y f), ©)

where y and 6 are parameters. Alternatively, the singular limit ¢ — 0 in (1) gives the
2D reduced system

0=y—f),
y=—x+a+bcosb, (10)
b =0,

where the overdot denotes the derivative with respect to the slow time t = & t. The
manifolds S and S are non-unique. Hence, the canards that lie near the manifolds
are also non-unique. However, for a fixed choice of invariant manifolds, S5 and SZ,
their transverse intersections correspond to maximal canards.

Systems (9) and (10) are two different approximations of the fvdP equation. The
idea of geometric singular perturbation theory (GSPT) (Jones 1995) is to combine
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information from the 1D layer and 2D reduced problems in order to understand the
dynamics of the full 3D fvdP equation for 0 < ¢ < 1.

We begin with an analysis of the 1D layer problem (9), which is an approximation
of (1) wherein the slow processes are assumed to move so slowly that they are fixed.
The critical manifold is the set of equilibria of the layer problem (9):

S = {(x,y,@)eszSl :y:f(x)}.

Linear stability analysis of (9) shows that there are disjoint curves, L, of fold points
given by

L:={(x,y,0)e S :x==l1},

which separate the outer attracting sheets, S,, of S from the middle repelling sheet,
S,, of S. Fenichel theory (Fenichel 1979; Jones 1995) guarantees that the normally
hyperbolic segments of S (i.e. the parts of S, and S, at O(1) distances from the fold
curve L) will persist as invariant slow manifolds, S/ and S¢, of (1) for0 < e <« 1.

The price we pay for the approximation (9) is that we have trivial dynamics on S.
To obtain a non-trivial flow on S, we turn to the reduced problem (10), which is an
approximation of (1) wherein the fast motions are assumed to be so rapid that they
immediately settle to their steady state, which is precisely the critical manifold. In
other words, the reduced problem prescribes a non-trivial flow along S. The price we
pay for this approximation is that the reduced flow is not defined away from S. Note
that the restriction of the flow of (1) to S¢ is a small smooth perturbation of the reduced
flow on S.

To analyse the flow on a manifold, we use the coordinates (x, 6). We differentiate
the algebraic constraint y = f(x) with respect to ¢ to obtain the evolution equations
in this coordinate chart,

(x> —Dx=—-x—+a+bcosb, an
6 =w.
The reduced flow (11) is singular along the fold points L of (9). To remove the finite
time blow-up of solutions at the folds, we multiply the right-hand side of (11) by

x2 — 1 to obtain
X=—x+4+a-+bcoso,

. 12
6 =wm@x>—1), (12)

which is topologically conjugate to (11) under the time rescaling dr = (x> —1) ds, and
the overdot now denotes derivatives with respect to s. System (12) is equivalent to the
reduced flow (11) on the attracting sheets S,, where the time rescaling df = (x2—=1)ds
preserves the orientation of trajectories. On the repelling sheet S,, however, we have
x2 — 1 < 0, so that the time rescaling reverses the orientation of trajectories. Thus,
to obtain the reduced flow (11) on S, from (12), we simply reverse the direction of
trajectories of (12) whenever we are on the repelling sheet of the critical manifold.
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2.2 Folded Singularities and Singular Canards

The desingularised system (12) possesses special equilibria called folded singularities,
M, which are points along the fold curves where the right-hand side of the x-equation
vanishes. In system (12), there are infinitely many pairs of such points (when 6 is
considered in its lift to R):

1—
M::[(x,y,@)eL:Q:Zkrr:I:cos_l( ba),keZ],

where |1 —a| < b. Folded singularities are not true equilibria of the reduced flow (11).
Instead, they correspond to points of (11) where there is potentially a cancellation of
a simple zero in the x-equation and trajectories may pass through the fold (via the
folded singularity) with finite speed. Such a trajectory of the reduced flow that passes
through a folded singularity and crosses from the attracting (resp. repelling) sheet to
the repelling (resp. attracting) sheet is called a singular canard (resp. singular faux
canard) (Szmolyan and Wechselberger 2001; Wechselberger 2005, 2012).

Considered as equilibria of the desingularised system (12), folded singularities are
classified according to their linearisation. Folded nodes have real eigenvalues of the
same sign. Folded saddles have real eigenvalues of opposite sign, whilst folded foci
have complex eigenvalues. In the fvdP equation (1), we find that for @ > 0 the folded
singularities with

1_
0, (k) = 2k — cos™! ( - a),

are folded saddles, whilst the folded singularities with

1 f1—a
0, (k) = 2km + cos 5 ,
are folded nodes provided

A—a)l <b><(1-a)’+

64>

Folded nodes and folded saddles have been demonstrated to be the organising cen-
tres for complex phenomena. Folded nodes for instance have been identified as the
cause of the small oscillations in mixed-mode oscillations patterns in various neu-
rophysiological problems (Erchova and McGonigle 2008), such as in a self-coupled
FitzHugh—Nagumo model, in a Hodgkin—Huxley model (Rubin and Wechselberger
2008), and in a pituitary lactotroph cell model (Teka et al. 2011). More recently, folded
saddles have been identified as playing a significant role in distinguishing between
transient spiking and quiescence in a model of propofol anaesthesia (Mitry et al. 2013)
and in non-autonomous excitability models (Wechselberger et al. 2014).
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2.3 Canards of Folded Saddle-Node Type I Points

Folded nodes and folded saddles can be created through bifurcations in at least two
distinct ways in (12): via a folded saddle node (FSN) of type I (Krupa and Wech-
selberger 2010; Vo and Wechselberger 2015) or via a FSN of type II (Krupa and
Wechselberger 2010). Both FSNs correspond to a zero eigenvalue of the folded node
(or folded saddle). The two FSN scenarios are distinguished by their geometry. In the
FSN I limit, the centre manifold of the FSN I (in system (12)) is tangential to the fold
curve. In the FSN II limit, the centre manifold of the FSN II is transverse to the fold
curve. We focus here on FSN I and refer to the remark below for FSN II points.

The FSN I is the codimension-1 bifurcation of the desingularised system (12) in
which a folded saddle and a folded node coalesce and annihilate each other in a saddle-
node bifurcation of folded singularities. For the fvdP equation (1), there are infinitely
many such FSN I points: (x, y, ) = (1, —%, 2km), and they occur fora = 1 £ b and
w = ¢w. The FSN 1T at a = 1 — b has its centre manifold on S, so that the funnel
region (enclosed by the strong canard of the folded node / folded saddle canard and the
fold curve) vanishes in the FSN I limit. In this case, we expect generic solutions of (1)
near this FSN I limit to either be relaxation oscillations or mixed-mode oscillations.
The FSN 1 ata = 1 + b on the other hand has its centre manifold on S so that the
funnel persists in the FSN I limit and most solutions of (1) can tunnel through S, and
return to S,. A representative example of the passage through a FSN I bifurcation at
a = 1+ b is shown in Fig. 5.

In the FSN limit, the standard folded node/folded saddle theory requires modifica-
tion. For the FSN I, the following results were recently proved in Vo and Wechselberger
(2015), valid for 0 < ¢ <« 1 and u = O(e%) where o« > 1/4:

(a) x (b) x (c) x
Sa M
CM

'75 Vs Vs

L 0 6 0
0, A [

o o W 1Oks
Sy

Fig. 5 Reduced flow (11) of the fvdP equation (1) shown in a neighbourhood of the upper fold curve L
(definedbyx =1,y = —3)form = 1,b=0.0l,andaa=1+54,ba=1+bandca=1+3L.Ina
where a < 1+ b, there is a folded node (6,,) and a folded saddle (65). The strong and weak eigendirections
of the folded node are denoted by y; and yy,, respectively. The singular canard and faux canard of the folded
saddle are labelled y;s and yr, respectively. There is a heteroclinic connection CM from 60, to 05, with yy
tangent to CM at 0y, and y tangent to CM at 0. In b where ¢ = 1 + b, the folded singularities merge
to a FSN I (indicated by OpsN). In this case, the singular strong canard of the folded node merges with the
singular canard of the folded saddle. Meanwhile, the singular weak canard of the folded node merges with
the faux canard of the folded saddle to become the centre manifold W€ of the FSN I In ¢ where a > 1+b,
the folded singularities (and associated canards) have been destroyed in the FSN I bifurcation, and there
are no canard dynamics
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1. The singular strong canard of the folded node perturbs to the primary maximal
strong canard. The singular canard of the folded saddle perturbs to a maximal
canard.

2. There exists a heteroclinic connection C M between the folded nodes and folded
saddles of (12). This heteroclinic perturbs to a canard—faux canard solution C M*®
that corresponds to both the primary weak canard of the folded node and the
faux canard of the folded saddle (faux canards are the equivalent of singular faux
canards for 0 < ¢ < 1).

3. There exist O(¢~'/4) canards and faux canards.

Thus, canards and faux canards of the FSN I oscillate about an axis of rotation, which
is approximately given by the heteroclinic CM (see Fig. 5a for instance). For the
fvdP, we find that CM := {(x, y,60) € S : x = a + bcos8}. We study the associated
maximal canards of (1) in Sect. 3.

Remark 1 For the fvdP equation (1), FSN II points are codimension-2 bifurcation
points of the desingularised flow (corresponding to @ = 0) and constitute a special
case of the FSN I. They can be analysed using the approach presented in Krupa and
Wechselberger (2010).

3 Loci of the Maximal Canards for Low Forcing Frequencies

In this section, we analyse system (1) with low-frequency forcing (w = ¢ @). We prove
Theorem 1.1, demonstrating that, for b = O(,/¢), formula (2) gives the branches of
the folds of the primary maximal canards and that for each value of a in between the
fold curves, there are two primary maximal canards of system (1) given in parameter
space by (7). More precisely, we analyse the FSN I points to show that formula (2)
gives the locus of points at which the primary strong canard of a folded node point
merges with the folded saddle maximal canard. We present the analysis for the FSN I
that occurs for a = 1 — b and note that the FSN I at @ = 1 + b is treated similarly.

For the analysis with low-frequency forcing, we first translate the FSNTata = 1 -5
to the origin

2
u=x-—1, v=y+§, n=a—1+b,
so that (1) is transformed to

1
I 2 -3
u =v (u +3u),

e(—u+n+b(cosf — 1)),
Ew.

13)

v/
0/

We then inflate the FSN I singularity to a hypersphere using the spherical blow-up
transformation:
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where > + 1% + 52 + &2 = 1. Moreover, we rescale the parameters b and 7 as
b=ep, n=ey,

where 8 = O(1) and y = O(1). Also, we append the trivial equation ¢’ = 0 to system
(13) and take n > O sufficiently small. The (spherical) blow-up transformation is a
map from B := S* x [—u, u] into R*. We examine the vector fields induced by
this coordinate transformation in two useful coordinate charts: the entry-exit chart (or
phase-directional chart) K1 : {v = 1} and the rescaling (or central) chart K» : {¢ = 1},
beginning with K.

In chart K1, the blow-up coordinates are

u:rlzul, vzrf, 0 =r0;, g:r?gl’ (14)
where the subscript corresponds to the chart number. The governing equations are
. 2 2.3
uy=1—uy— -rjuy; — —¢eru F,
1= 3T 5

s o F
ri 4V181 s (15)

. 1
01 =r1816—18191F,

él =—8%F,

where F(uy,01,r1) = —ui +r12 g1y +pB./e1 (cos(r161) — 1), we have desingularised
the vector field by a factor of rlz, and the overdot denotes the derivative with respect
to the new time. The hyperplanes {r; = 0} and {¢; = 0} are invariant. In the invariant
subspace {r; = 0}, 8; = 0 is an attracting fixed point. The line

Ly ={(u1,r1,601,€1) = (u1,0,0,0)}

is invariant, and on it the system dynamics are governed by i1 = 1 — uf Furthermore,
on ¢, there are attracting and repelling fixed points p, = (1,0,0,0) and p, =
(=1, 0,0, 0), which, respectively, have centre manifolds N, | and N, in the half
space €1 > 0.

In order to demonstrate the existence of the primary maximal canards, we will
show that there is a heteroclinic connection between p, and p, in the hyperplane
{r1 = 0} and that this heteroclinic orbit persists for sufficiently small values of ry,
using Melnikov theory. The persistent connections correspond to the primary maximal
canards. We carry out the relevant analysis in the rescaling chart K5, where the blow-up
transformation is given by

u:rzzuz, v:ré‘vz, 0 =rb,, S:r; (16)
Note that r, = ¢!/4, so that chart K corresponds to an e-dependent rescaling of the

fvdP equation. Also, the coordinates in the two charts are related via the following
transformation:
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1/4 —-1/2 — —1/4
r2=r181/, Uy =uj €, /2 v2=811, 0 =01 ¢, s

where g1 > 0.
In chart K>, the blown-up system (13) is

. 1
Uy = vy — u% — grgug,

02 = —us +r3y + B (cos(ra6) — 1), a7

9.22”2607

where we have desingularised the vector field (i.e. rescaled by r22) and the overdot
denotes the derivative with respect to the new time #,. This system is singularly per-
turbed with fast variables (u2, vy) and slow variable 6,. Rewriting the blown-up system
in non-autonomous form, we have

_ 1

ujy = vy — u% — grzzug,

0y = —uz + 13y + B (cos(rgwtz) c08(r262.0) — 1) — Bsin(2@n) sin(r26.0).
(18)

where 65 ¢ is an arbitrary phase. For w and #, of O(1), we have

cos(ramta) cos(rbag) — 1 = O@F2) as ry — 0,

sin(ry@ty) sin(r262.0) = O(r3) as ry — 0.

The unperturbed problem corresponding to (18) is obtained by setting r» = 0,

2
uhy = vy — u3, (19)

1/2 = —Uuj.

This system is Hamiltonian with Hamiltonian function

1
H(uy, vp) = e 2 ('4% —v — 5) ,

and non-canonical formulation

. 1 ,, 0H
= —¢C 2—7
12 2 oy
1 oH
Uy = ——e?2 —.
2 ouy

The level curves of H are presented in Fig. 6. The contour I" separates closed trajec-
tories from unbounded orbits and has the explicit time parametrisation
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Fig. 6 Contours of the
Hamiltonian function H.
Periodic solutions of (19)
correspond to level sets with

—% < H < 0. Unbounded
solutions of (19) correspond to
H > 0. The H = 0 contour, ',
is the heteroclinic connecting the
points p, and p; at infinity

( (Ll
ur,v2r) = 22,42 2 .

The separatrix I" corresponds to the singular strong canard of the FSN 1. In geometric
terms, it is a heteroclinic orbit that lies on the upper hemisphere and connects the fixed
points p, and p,, both of which lie on the equator of the blown-up sphere.

We now use the Melnikov method to analyse the persistence of I' under small-
amplitude perturbations. As applied to (18), Melnikov theory measures the splitting
distance D between the curves of solutions of the perturbed system that are forward
and backward asymptotic to p, and p,, respectively. We develop D in an asymptotic
series in the small parameter r;:

D(r2) = diry +dor + -+,

where the terms in the Melnikov integral are given by

00 _lu3
dz/ v Hp - P 2 drz
. P\r+ 2 (cos(ryatz) cos(ra62,0) — 1) ’

%0 0
dy = /_ VA ( B sin(r2aty) sin(rzez,o)) dra.

-3
)

We note that the integrand in d> is an odd function of 7, so the integral evaluates to

zero and the sine term has no contribution to the distance measurement D. We also
cos(rzzatz) cos(r2602,0)—1 . . . .
note that the = - term in d; is O(1) with respect to r,. The integral
2
dy was evaluated by taking cos z = Re(e'?), completing the square in the exponential,

and deforming the contour in the complex plane. The result is

e 2m 21 _1,42
d = B — nls+y)— pe 22 COS(VQQZ’O) .

2
ry 8
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Substituting this into the bifurcation equation D = 0, we have

1 _
ry (§ + V) + B cos(r202,0) (e_%rng - 1) =0.

Thus, reverting to a, b, ¢, and o, the primary maximal canards for the FSN I are
given by

2
a=1-— % — bcos(6p) exp (—8%) , (20)

which is (7). We remark that 6 is the arbitrary phase 6, ¢ in the original 6 coordinate
(i.e. Bp = r262,0). This completes the demonstration that (7) holds for low-frequency
forcing, giving the locus of points at which the primary maximal canards exist. More-
over, one also sees that, for each w, the folds of the primary maximal canards at the
endpoints of these parameter intervals are given by

-2

& Ew
=1—-=%b -—, 21
“ 8 exp( 2) D

which is precisely (2). The loci in the (w, a) plane of the folds of maximal canards
mark the upper and lower boundaries of the regime in which the primary maximal
canards exist. This completes the proof of Theorem 1.1.

Remark 2 For w = ¢ w, one may extend the result of Theorem 1.1 to the parameter
regime in which b = 0(8%). Leth = ¥ Bandn = e y,where § and y are O(1) with
respect to €. Then, the perturbation terms in the v, component of the non-autonomous
system become:

19) |:y + ﬁz (cos(rzzatz) cos(r262,0) — 1) — % sin(ryat,) sin(r29270)} .
2 2

Here, the even terms are O(r) as r, — 0, so that one may proceed with a similar
Melnikov calculation as above, and the odd terms again do not contribute to leading
order in the Melnikov calculation.

We further note that a blow-up and Melnikov computation similar to that just
presented for the FSN I points may be done for the folded nodes and folded saddles,
and this gives the location of the maximal canards as

l—a—e/8
O.s (k) ~ 2k + cos™! (“TE/ + O(b)) . kel

See also equation (42) in Benes et al. (2011).

We further remark that our analysis here identifies the existence of a fold of canard
solutions and then explicitly tracks that special maximal canard solution in the (v, a)
plane. The analysis in Vo and Wechselberger (2015) on the other hand deals with the
existence of primary and secondary canards (and the associated bifurcation delay) as
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the system transitions from a folded node regime to a folded saddle regime via the
FSN I bifurcation. The analysis presented herein should carry over to the general FSN
I case in Vo and Wechselberger (2015).

4 Loci of the Torus Canards and Their Folds for Intermediate- and
High-Frequency Forcing

In this section, we study system (1) in the intermediate-frequency regime with w =
/e and Q = O(1), as well as in the high-frequency regime with v = O(1). We
prove Theorem 1.2, demonstrating that (1) possesses a family of torus canards in
the intermediate-frequency regime, in between the twofold curves (3) of these torus
canards. The central methods used in the proof are geometric desingularisation—in
which we use a cylindrical blow-up of the fold curve rather than a spherical blow-up
as used in the previous section—and a Melnikov calculation to identify the parameter
values for which the torus canards exist. After Theorem 1.2 is established, we prove
Corollary 1.3 for the high-frequency regime.
In the intermediate-frequency regime, system (1) is equivalent to

xX=y—f),
y =ée(—=x+a+bcosb), (22)
0 = JeQ.

First, we rectify the fold curve so that it coincides with the 6 axis,

Also, we recall

where & and B are O(1) with respect to &. This transforms (22) to the following system:

1
w =v—u®— -,
3
U/=—8u+82(&+/§cos6), (23)
0’ = J/eQ.
Next, we perform the following cylindrical blow-up transformation:
u=7u, v=rv, &=T%, (24)

which transforms the circle of fold points into a torus (this contrasts with the spherical
blow-up of the FSN I point in the previous section). Append the trivial equation
¢’ = 0 to system (23) and let . > 0 be sufficiently small. For each 6§ € S! and
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for all non-negative values of the system parameters, the coordinate change is a map
from B := S? x [—u, 1] into R3. We examine the vector fields induced by (23)
in the entry-exit (or phase-directional) chart K1 = {v = 1} and the rescaling chart
K, ={e=1}.

In chart K, the coordinates are

u=riuj, v=r12, 8=r]281.

Setting F'(uy,r1,€1,0, @, B) =—u;+err(a+ Bcos(@)), we find that the system
in chart K is

. ui &l
u1=1—u%—§r1u?—T ,

.o _ney

ry = ) s (25)
9‘24/819,

é‘1=—8%F,

where we have desingularised the vector field by rescaling the time variable by a factor
of r1 and the overdot denotes derivatives with respect to the new time variable. In the
phase space of (25), the hyperplanes {r; = 0} and {¢| = 0} are invariant. In addition,
for every (&, ,5), there is an invariant line

Zu :{(u17r]’81) Z(M],O,O)}

on which the dynamics are governed by ut; = 1 — u% and 6 = 0. Moreover, for every
(@, ,3), the points

pa=(1,0,0) and p, = (~1,0,0)
are attracting and repelling fixed points, respectively, on ¢,, and they have two-
dimensional centre manifolds N, 1 and N, in the half space 1 > 0.

Having established the dynamics in chart K1, we now analytically continue solu-

tions in chart K into chart K> in order to understand the geometric structures in K»
and their connections. In chart K>, the coordinates are

u=ruy vV= r22v2, &= r22, (26)

and these coordinates are related to those of chart K via the following coordinate
transformation:

—1/2 —1 1/2
up =uj&; ', v=¢&, n=rye’,

where g1 > 0.
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In chart K>, the system is

1
. 2 3
uy = v — uz - grzuz,

vy =—ur+nr (& + B cos(Qr + 90)) , (27)

where we have rescaled time by a factor of r; to desingularise the vector field (with #,
denoting this rescaled time variable), the overdot denotes the derivative with respect
to 1, and we have written the system as a non-autonomous system. For reference, we
emphasise the relation /¢ = ry. We now show that system (27) possesses a special
family of homoclinic orbits, connecting the point at infinity to itself, which implies that
the orbits connect the points p, and p, identified in chart K. These orbits correspond
to singular torus canards of the original system (22).
The unperturbed problem associated with system (27) is given by

iy = vy — u3,

V2 = —Uy,

which is the same as (19). As shown in the previous section, this unperturbed system
is Hamiltonian

1

H(up, vp) = e 222 (u% — vy — 5) .

Along the level set I' := {H = 0}, which is the separatrix between bounded and
unbounded solutions (see Fig. 6), the solutions are given explicitly by

t l‘22 1
uz r(f) = 3 vo,r() = T

In the language of dynamical systems, it is a homoclinic orbit to infinity.

With the above information about the unperturbed system in hand, we now show that
I" persists for sufficiently small r, in (27). We use a straightforward generalisation of
Proposition 3.5 of Krupa and Szmolyan (2001), where we note that the perturbation
terms there are strictly autonomous, whereas here the perturbation terms include a
small-amplitude, time-periodic function, and a compactification of the phase space
can be used. Moreover, we observe that the parameter there, A, is also treated as
being a small variable via the linear scaling of A with r,, whereas here we have chosen
instead to scale the parameters « and b with ¢ from the outset and to treat &, B =0O()
as parameters. In this manner, r, is the only small variable in the analysis here.

The splitting distance between the manifolds N, » and N, > for system (27) is

D(r) =dprp+ -+ .

Here, the dependence of the Melnikov function on the system parameters is implicit.
We find
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9] 1.3
dr, =/ V H|p - (~ . 3tr ) dr,
oo o + B cos(R2tr + 6p)

Var (% + &+ Ee—%z cos(@o)) , (28)

e
2

where the last term in the integral was evaluated by using cos(z) = Re(e'?), completing
the square on the exponential, and shifting the contour in the complex plane. Hence,
reverting to the given parameters, we see that to leading order the splitting distance is

e Je a—-1 b @
D——Ex/ﬂ[?—i- NG —i-ﬁe 2 cos(@o)]. (29)

Therefore, for each b satisfying the hypotheses of the theorem and for ¢ small
enough, the simple zeroes of the Melnikov function are given in the (a, 2) plane by

€ _2?
a=1-— 3~ be” 7 cos(6y). 30)

This formula, which is exactly (7) in the intermediate-frequency regime, gives the
parameter values for which system (27) has a one-parameter (6p) family of persistent
homoclinic orbits, and these persistent homoclinic orbits of (27) are the torus canards
of (22).

Also, as a direct corollary, we observe that the envelope of the family of torus
canards is given by

—l——g:l:b ——2 3D
= e ,
a 3 Xp

which is precisely formula (3). This completes the proof of Theorem 1.2.

To conclude this section, we prove Corollary 1.3. The proof follows by extend-
ing, in a straightforward manner, the above analysis of the persistent homoclinics
and the folds of the torus canards in the proof of Theorem 1.2 for the intermediate-
frequency forcing regime to the high-frequency forcing regime. In particular, in the
high-frequency regime, @ = O(1), which corresponds to taking @ = O(1/./¢)
in the above analysis. Following exactly along the above calculations, the geometric
desingularisation method yields the same equation (27) in chart K>, but now the small-
amplitude time-periodic forcing term has high-frequency = O(1/,/¢). Hence, the
suitable version of the Melnikov theory is that for rapidly forced systems, and the split-
ting distance along I' is again given by (31), which is now exponentially small in &,
since Q = O(1/4/¢). The system here fits into the framework of rapidly forced Hamil-
tonian systems studied in Gelfreich (1997), and we have verified that the hypotheses of
Gelfreich (1997) are satisfied for our problem, once the vector field has been compact-
ified. Consequently, the result carries over by Theorem 1 of Gelfreich (1997), which
states that the splitting distance is given to leading order by the Melnikov function;
see also Delshams and Seara (1992) and Delshams and Seara (1997) for the analysis
of the splitting distance in time-periodically perturbed planar Hamiltonian systems.
This completes the proof of Corollary 1.3.
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Fig. 7 Width of the canard -6
region in the = O(1) regime, log(d)
as a function of ¢ for b = 0.01

e 1 L5 2 25 € 3
x 107

The result of this Corollary for the high-frequency regime also agrees well with
the results obtained from numerical simulations. In Fig. 7, for = O (1), we present
a computation of the distance between the twofold of maximal primary canards as a
function of e. We gathered the control points obtained for various computations for
eleven fixed values of &, decreasing from 3 - 1073 down to 8 - 10~* and plotted them
on a logarithmic scale. The hyperbolic shape of the resulting curve confirms that this
distance is exponentially small in ¢ as ¢ tends to 0.

5 Secondary Canards

Having established the existence of the primary strong canards and their folds, we
now turn our attention to the secondary canards of the folded nodes of (1), which exist
in the low-frequency forcing regime w = ¢ w. By definition, secondary canards lie in
the transverse intersections of the invariant slow manifolds S5 and S;. A representa-
tive example of these manifolds and their intersections (i.e. the secondary canards) is
shown in Fig. 8. These manifolds are computed from curves of initial conditions traced
on the attracting and repelling sheets, respectively, of the critical manifold S, up to a
cross section at fixed angle 6 corresponding to the maximal torus canard (Desroches
et al. 2008, 2010):

T, = [Gn = cos™! (# + O(b))] .

In Sect. 5.1, we study the folds of the secondary canards and investigate how they
change in the (w, a) plane under variation of the forcing amplitude b (analogous to
the folds of the primary canards). We then investigate in Sect. 5.2 how large-amplitude
oscillations can grow from small-amplitude oscillations.

5.1 Continuation of Secondary Canards

As shown in Fig. 8, the invariant slow manifolds S5 N X, and S N %, spiral around
one another, which is typical of a folded node. More precisely, let u = Ay /Aq,
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Fig. 8 Attracting (S5, red) and repelling (SZ, blue) slow manifolds of system (1) for a = 0.9935,b =
0.01, @ = 0.005, and ¢ = 0.05, together with a stable mixed-mode oscillation consisting of one large-
amplitude oscillation and six small-amplitude oscillations found for the same parameter values by direct
simulation. Bottom row: invariant slow manifolds S (red) and S¢ (blue) of system (1) in the cross section
2. The secondary canards are identified as the intersections (black dots) of S5 and S¢ (Color figure online)

[Aw| < |As|, denote the eigenvalue ratio of a folded node, regarded as an equilibrium
of the desingularised system (12). Provided ¢ is sufficiently small and p is bounded
away from zero, the total number of (primary and secondary) maximal canards is

Smax + 1, where
P u+1
max — ZI,L I

and |-| denotes the floor function. In particular, a persistent branch of secondary
canards bifurcates from the weak canard in a transcritical bifurcation for odd integer
values of ,Lfl (Wechselberger 2005).

Remark 3 The kth secondary canard exhibits k small oscillations about the weak
canard fork = 1,2, ..., smax — 1. These small oscillations are localised to an O(/¢)
neighbourhood of the folded node (Wechselberger 2005, 2012). Moreover, trajectories
on S7 situated between yx—1 and yi, k = 1,2, ..., smax execute k small oscillations
about the weak canard, where yy and y;,, correspond to the primary strong canard
and primary weak canard, respectively.
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Fig. 9 Resonance curves for b = 1, and a ¢ = 0 and b ¢ = 0.01. In b, the theoretically computed curve
of maximal canards for the FSN I (2) is shown in red (thin outer curve). Inside this envelope, there are two
black resonance curves. Both correspond to the numerical continuation of folds of maximal canards. The
outermost black curve corresponds to the FSN I (i.e. where i = 0). Note that (2) breaks down when w is
no longer O(e). The inner black curve corresponds to the maximal canard of the degenerate folded node
(i.e. where ¢t = 1). The inset shows the numerical continuation of the folds of canards corresponding to
n = 1and u = 1/3. In particular, for the © = 1 resonance, we compare the numerically computed result
(blue) and the theoretical result obtained in (32) (red) and find that there is excellent agreement away from
the FSN I boundaries (Color figure online)

By tracking the resonances u_l =2k+1,k=0,1,2,..., we can follow (in the
singular limit) the locations in the (w, a) plane where the secondary canards are born.
Figure 9 shows an example for b = 1. The non-singular (w, a) plane shows that only
the folds of canards corresponding to the FSN I and the degenerate folded node extend
into the intermediate-frequency regime. All other branches of folds of canards are
restricted to the low-frequency regime w = O(e).

Remark 4 Note that the resonance curves in Fig. 9 bear no resemblance to the curves
of folds of secondary canards in Fig. 3. This is to be expected since b = O(/¢) in
Fig. 3, which implies that u = O(y/¢) and the folded node theory does not apply.

For the degenerate node (1« = 1), a Melnikov computation similar to that in Sects. 3
and 4 shows that the locus of the primary maximal canard of the degenerate folded
node in the (w, a) plane is

_ e ) 1 I _,
a—l—g:i:,/b _64626Xp _ng , (32)

which holds provided @ = O(1), /b — - 4152 = O(¢) and Vb? — (1 —a)?
O(4/¢). The inset of Fig. 9 shows that there is excellent agreement between this
theoretically computed curve and the curve obtained from numerical continuation.
The deviation between theoretical and numerical results for this degenerate folded
node maximal canard starts to become significant when the degenerate node branches
approach the FSN I branches. We note an important implication: all secondary canards
due to folded nodes are restricted to the region of the (w, @) plane bounded by w = 0,
the locus of the folds of maximal canards of the FSN I and the locus of the maximal
canards of the degenerate folded node.
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Fig. 10 Projection of the 0.75
one-loop (outer orange), Y
two-loop (central magenta), and
three-loop (inner cyan)

secondary canards of (1) shown

0.50 |

forw = 0.01, ¢ = 0.01, 025}
b =0.01, and

a = 1.0034909031 (one-loop),

a = 1.0034909029 (two-loop), oo

and a = 1.0034909029
(three-loop) shown in the (x, y) 025k .
plane (Color figure online) \ _—

\ h )
0.50 f h

0.75 n n L n " 2 "
0.00 0.50 1.00 1.50 xT 2.00

As was the case for the numerical continuation of the folds of the primary canards
and the folds of the torus canards, the numerical continuation of the maximal sec-
ondary canards is done by solving families of boundary value problems and computing
branches of such solutions using pseudo-arclength continuation. Along these branches,
a number of fold points can be detected, and then the curves of folds of secondary
canards can be continued in two parameters. For a representative set of parameter val-
ues, the folds of the first, second, ..., tenth secondary canards (i.e. with respectively
one, two, . . ., ten loops) are shown in the (w, a) plane in Fig. 3. The outermost enve-
lope in Fig. 3 is the curves of folds of primary canards. The rightmost path enclosed
by the fold curve of the primary strong canards represents the fold curve of the first
(one-loop) secondary canard, and each successive curve to the left represents a family
of folds of secondary canards with one additional loop. These branches of folds of
secondary canards emanate from the FSN I points ata = 1 — & £b. As w is increased,
the corresponding pairs of n-loop branches come together at turning points.

It is also useful to examine projections of the secondary canards onto the (x, y)
plane. In Fig. 10, we show the first three maximal secondary canards, with respectively,
one loop (yellow), two loops (red), and three loops (blue). The highest loops of the
2-loop and 3-loop maximal secondary canards are observed to lie extremely close to
the single loop of the one-loop maximal secondary canard. The same holds for all of
the higher-loop secondary canards, as well. Also, the second loop of the 2-loop canard
lies inside the first loop, and it lies extremely close to the second loop of the 3-loop
canard. In addition, for even smaller values of the forcing frequency w, the y-intercepts
of the return jumps increase. Moreover, these y-intercepts diverge to oo in the limit
o — 0.In fact, in this limit, the maximal secondary canards collapse onto the primary
strong canard, consistent with the observation that the branches of maximal secondary
canards emanate from the same FSN I points as the primary canards do.

We now investigate what happens to the invariant slow manifolds near the turning
points (recall Fig. 3) of the fold curves of secondary canards. In Fig. 11, we show
one such fold curve and take four values of w, for a fixed value of a, near the turning
point which marks the largest @ value of this curve (top panel). For each value of w,
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Fig. 11 Evolution of the intersection points (black dots) between the curves representing S5 and Sf in a
fixed cross section through the folded node. Here, a = 0.99641, b = 0.01, and ¢ = 0.05. The values of @
are (1) 0.049, (2) 0.0505, (3) 0.0517, (4) 0.0525, as also labelled on the horizontal axis in the top frame. In
the transition between frames (/) and (2), the lower two intersection points disappear. Between frames (2)
and (3), two intersection points are created. Then, two disappear in the final transition shown, from (3) to

“

we compute S5 and S up to a fixed cross section, following the procedure described
above. Then, the intersection curves of both manifolds in the fixed cross section are
shown for each w value in the four bottom panels of Fig. 11. Each time the fold curve of
maximal canard solutions is crossed, two intersections of the attracting and repelling
slow manifolds disappear or are created. This is illustrated in each of the transitions
shown in panels (1)-(4).
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Fig. 12 Repelling slow manifold reversing the direction of spiralling as successive large-amplitude oscil-
lations appear in the orbit. b1, b2, and b3 show the solution profiles corresponding to three such events.
Here, a = 0.9935,b = 0.01, w = 0.3, and ¢ = 0.05

5.2 Growth of Large-Amplitude Oscillations from Small-Amplitude
Oscillations in the Secondary Canards

Along the continuation of the secondary canards, an orbit segment can ‘grow’ a large-
amplitude oscillation. This occurs in regions where the repelling slow manifold spirals
backwards instead continuing to spiral inwards towards the weak canard. In Fig. 12,
we show the repelling slow manifold for @ = 0.3 in the cross section ,,; the direction
of spiralling changes three times along this portion of the slow manifold, at the points
labelled (b1l), (b2), and (b3) in frame (a). Each direction reversal corresponds to the
orbit growing a large-amplitude oscillation. In panels (bl), (b2), and (b3), we show
the profiles of the computed solution segments at these events. Note that the first fold
encountered (starting from the centre of the spiral and going outwards) corresponds
to the orbit segment having one small-amplitude oscillation grow up to the size of
an large-amplitude oscillation (this occurs at the second fold), whilst the other small-
amplitude oscillations stop growing in size.

Remark 5 An important consequence of studying the curves of maximal canards and
maximal torus canards in the parameter space of (1) is that they serve as the bound-
aries between different dynamic regimes of (1). As highlighted briefly by the graphical
summary in the (w, @) plane shown in Fig. 4, the fvdP equation (1) exhibits small-

@ Springer



J Nonlinear Sci

@ 4 (b) , o
= 1.01 = 1.00
1.00 095}
0 1000 2000 3000 4000 0 1000 2000 3000 7000
Time Time
(c) 5 (d) o
1 e o S A M e
= 0 = 0
IRERRER R
-2 -2t

0 1000 2000 3000 4000 0 1000 2000 3000 4000
Time Time

e , ® [

MR
SR

0 1000 2000 3000 4000 0 1000 2000 3000 4000
Time Time

X
=)

Fig. 13 Transition from small-amplitude oscillations to mixed-mode oscillations to large-amplitude oscil-
lations in the fvdP equation (1). The attractors of (1) are shown for ¢ = 0.01, w = 0.01,andaa = 1.01, b
a=0.9999,ca =0.999,da =0.994,ea =0.991, and fa = 0.987

amplitude oscillations, large-amplitude or relaxation oscillations, and mixed-mode
oscillations. The small-amplitude oscillations are the %’—periodic solutions generated
when an attracting equilibrium of the unforced vdP equation (i.e. b = 0) is subjected
to a small-amplitude periodic forcing of frequency w (Fig. 13a). The large-amplitude
oscillations occur when the equilibrium of the planar vdP equation sits on the middle
branch of the cubic-shaped nullcline and the attractor of the system is a relaxation oscil-
lation that alternates the trajectory between the outer branches of the cubic (Fig. 13f).
The mixed-mode oscillations feature small-amplitude oscillations superimposed on
large-amplitude relaxation-type oscillations. Figure 4 shows that the mixed-mode
oscillations become more robust for low-frequency forcing, just as was observed in
numerical simulations of a rotated van der Pol-type model in Benes et al. (2011).

6 The fvdP is a Normal Form for a Class of Systems Near Torus Canard
Explosions
In this section, we prove that, under a number of natural conditions, a slow/fast system

with two fast variables and one slow variable, which is subject to time-periodic forcing
and for which the fast system possesses a generic fold of limit cycles, is equivalent to
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a system in which the fast component is given to lowest order by the forced van der
Pol system (1). We consider systems with two fast variables and one slow variable of
the following form:

Xx=filx,y,2)
y=fHx,y,2) (33)
z=¢eg(x,y,2), x,y,z€R.

The fast system is

x=filx,y,2)

34
y = folx,y,2) G

in which z is a parameter, and we make the following hypotheses about the fast system:

(H1) For z = 0, there exists a non-degenerate periodic solution 1:; and, here by
non-degenerate, we mean a periodic solution with finite period.
(H2) The Floquet multiplier of this periodic orbit at z = 0 is one.

Under the hypotheses (H1) and (H2), we prove the following theorem:

Theorem 6.1 Given (HI), (H2), and a non—degener{zcy assumption (see (43) below),
system (33) is locally (in a small neighbourhood of T") orbitally equivalent to

p=z—p>+ 0%+ 0()
6 =1 (35)
z=¢g(p,0,2), 0,2,0 eR,

where g is 21 -periodic in 0, and z and p are small.

The fast subsystem of (35) has very similar dynamics to that of (1); however, the
slow system of the general systems may be much richer than the slow system of (1).
We make a more detailed comparison between the full systems later in this section.
We first analyse the fast systems.

We begin the proof of Theorem 6.1 with some preliminary transformations. On the
basis of (H1), one may rectify the flow of (34) so that the periodic orbit becomes the
unit circle. Next, using the coordinates

x={+r)cos(@) and y = (1+r)sin(d),
one may transform (34) to

F= fi(r,0,2)

. (36)
0= fr(r,0,z2),

where fl is 2 periodic in 6, f](O, 0,0) = 0, and fz # 0 in a neighbourhood of
(0, 6, 0). Also, one may scale the time variable so that (36) becomes
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r=F(@r0,z)

. 37
6-1, (37

with F = fi/ f>. This is a useful formulation of the fast system, and we work directly
with this throughout the proof.
In order to analyse the dynamics of this system for small values of r, we expand:

F(r,0,2) = o, )+rvi 0, )+r2v20, )+ -+rNyn @, 2+ 0N . (38)

Condition (H2) is now equivalent to

2
Y1(0,0)do = 0, (39
because
OF
—(0,0) =0,
or

where the average of F is defined as

_ 1 2
F(r,z) = Z/o F(r,0,2)d6.

Also, to analyse the dynamics for small values of r, it is useful to introduce a new
variable p by
r=go+pe” + >+ +pVpy. N=2. (40)

where ¢; are functions of (0, z) to be determined.
The following lemma lies at the heart of the proof of this theorem:

Lemma 6.2 There exists a choice of functions ¢;, i = 1,..., N, in the coordinate
change (40) and a function G(p, z) such that, in the coordinates (p, ), the fast system
(37) has the form

p=G(p,2)+ 0N

. 41
0=1. “D

Remark 6 Hypothesis (H2) is not needed for this lemma. Lemma 6.2 says that there
exists a near-identity transformation that makes (37) independent of 6 up to O( ,oN 1y,
The particular choice of the coefficient of the linear p term e?! in (40) more readily
facilitates computations involving the Floquet multipliers (i.e. hypothesis (H2)).

Proof See “Appendix 2”.
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Proof of Theorem 6.1 1f we apply the sequence of transformations leading to (41) to
system (33), we obtain a system of the form

p=Gp,2)+ 0"+ 0()
=1 (42)
z=¢8(p,0,z,¢).

with
N—-1
Gp.2) =D +j@)p’
j=0

and the coefficient functions are as introduced in the proof of Lemma 6.2. In particular,
hypotheses (H1) and (H2) imply A9(0) = 0 and A;(0) = 0. We now formulate the
additional degeneracy assumptions in terms of the functions A ;. We will assume that

N > 3. q
AQ
d—(O)#O
Z

22(0) # 0.

If (43) holds in addition to (H1) and (H2) we replace the variable z by Z = X¢(2)
and perform scalings and translations to arrive at (35), taking ¢ sufficiently small as
necessary. O

(43)

We now make some remarks relating the normal form equation (35) derived in this
section and the fvdP equation (1). Clearly, the fast subsystems are similar. If in addition
to (43) we assume that 13(0) # 0 and make some assumptions about the signs of the
coefficients, then the two fast systems are the same to lowest order (up to a simple
transformation). The situation with the slow equation is more complicated. In systems
with time-periodic forcing, we have shown that (1) is anormal form. Moreover, because
forced systems are not generic in the larger class of general slow/fast dynamical
systems, we expect the dynamics in this larger class to be even richer. In addition, if
we assume that g(0, 6p, 0, 0) = 0 for some 6y € [0, 27), then we may obtain some
canard dynamics. In general, these slow/fast systems will have folded singularities
and associated canard dynamics.

7 Conclusions and Discussion

In this article, we have established the existence of a number of different types of
canard solutions of the fvdP equation (1) across the entire range of forcing frequencies
o > 0. Most interestingly, we have found numerically that the families of primary
maximal canards and maximal torus canards are organised along single branches in
parameter space. In the low-frequency regime (w = O(¢)), Theorem 1.1 demonstrates
the existence of the primary maximal canards of the FSN I points and establishes that
formula (2) gives the loci of the folds of the primary maximal canards in the (a, b, ®)
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parameter space with b = O(4/¢). In the intermediate-frequency regime (w = O(/¢))
and high-frequency regime (w = O(1)), Theorem 1.2 and Corollary 1.3, respectively,
establish the existence of maximal torus canards as well as the formulas (3) and (4),
which explicitly give the locations of the folds of the maximal torus canards in the
(a, b, w) parameter space with b = O(e). These maximal torus canards lie precisely
in the intersection of the persistent critical manifolds of attracting limit cycles and of
repelling limit cycles. They are the analogs in one higher dimension of the maximal
canard cycles of the unforced van der Pol equation, see for example Benoit et al.
(1981), Dumortier and Roussarie (1996), Eckhaus (1983). Moreover, they are similar
to the folds of maximal torus canards observed earlier in a rotated system of van der
Pol type, see Figure 5 in Benes et al. (2011).

It was also shown that these analytical results are all representations of the same
formula (6) that holds across the entire range of forcing frequencies w > 0 for the
appropriate values of b and that these formulas agree well with the results obtained from
numerical continuations over the parameter regions in which they apply. Moreover,
in the limit @ — o0, the torus canards appear to be rotated copies of the limit cycle
canards that exist in the planar unforced van der Pol equation, and the interval of a
values for which the maximal torus canards exist shrinks to the value a.(¢) = 1 — %
at which the maximal canard solution exists in the unforced equation, recall (Baer
and Erneux 1986; Benoit et al. 1981; Braaksma 1993; Dumortier and Roussarie 1996;
Eckhaus 1983).

It is worth noting that the analytical results presented here for the torus canards
of (1) agree with and expand upon by the general topological analysis presented in
Section 6 of Burke et al. (2012). There, fast—slow systems with two fast variables
and one slow variable were studied in which there is a torus canard explosion in the
transition regime from stable periodic spiking (tonic spiking) to bursting, and examples
were given, including of the Hindmarsh—Rose equation, the Morris—Lecar—Terman
model, and the Wilson—Cowan-Izhikevich system. In particular, it was shown using
topological arguments that there must be a sequence of torus canards in these transition
regimes in order to satisfy the property of continuous dependence of solutions on
parameters. The topological analysis presented in Burke et al. (2012) is the analog in
one higher dimension of the topological analysis first used in Benoit et al. (1981) to
establish the existence of an explosion of limit cycle canards in the transition between
asymptotically stable solutions and full-blown relaxation oscillations in the unforced,
planar van der Pol equation.

In this article, we also studied the branches of the secondary maximal canards,
which exist in the low-frequency regime in (1). Secondary canards lie close to the
primary strong canard for most of their lengths, and in addition, they make finitely
many loops near the bottom of T, recall Fig. 7. They are indexed by the number
of loops and by the height in the y variable of the jumps from the repelling slow
manifold back to the attracting slow manifold. We showed how the dynamics of these
secondary canards changes as the parameters change along the fold curves, and we
identified the mechanism by which these branches turn around well before they get
into the high-frequency regime. In particular, the turning points correspond precisely
to the parameter values at which the fold curve of maximal canards is crossed and
two intersection points of the attracting and repelling slow manifolds are created (or
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annihilated). In addition, we identified how new large-amplitude oscillation segments
are added to the secondary canard solutions at points at which the direction of spiralling
of the repelling slow manifold is reversed, recall Fig. 9.

Finally, we proved that the fvdP equation (1) is a normal form for a class of slow/fast
systems with two fast variables and one slow variable, which possess a non-degenerate
fold of limit cycles in the fast system and which exhibit the torus canard explosion
phenomenon. Thus, the methods and results obtained here for (1) extend naturally to
a large class of slow/fast systems with single-frequency time-periodic forcing.

To conclude this article, we discuss a number of topics related to the canard solutions
of the fvdP (1). First, the fold curves of the primary maximal canards in the low-
frequency regime and the fold curves of the maximal torus canards in the intermediate-
and high-frequency regimes together serve as the boundary of the regime of mixed-
mode oscillations in (1), recall Figs. 4 and 13.

Second, there are many different branches of resonance curves, curves of torus
bifurcations, saddle nodes of periodic orbits, period-doubling curves of periodic orbits,
and so forth, all of which lie in the interior of the region of mixed-mode oscillations
in parameter space. These bifurcation curves play important roles as the boundaries
between orbit segments with different numbers of small- and large-amplitude oscilla-
tions. These are the subject of future work.

Third, in general planar slow/fast systems the formula for classical maximal limit
cycle canards is typically obtained as a power series in 1/¢. The coefficients in this
expansion can be obtained using the first Lyapunov coefficient of the Hopf bifurcation.
We refer the reader to Kuehn (2010, 2015) for a general treatment. Only in special
cases such as planar vdP does this expansion simplify. Similarly, the computation of
the maximal torus canards presented herein simplifies due to the simple form of the
fvdP equation. Extending the analysis of this work to more general slow/fast systems
is the subject of ongoing research.
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and Martin Wechselberger for useful conversations.

Appendix 1: Proof of the Existence of a Torus Bifurcation

In this appendix, we consider the fvdP oscillator (1) subject to high-frequency forcing
(w = O(1)). In this case, y is the only slow variable, and there is no critical manifold.
As such, the fast dynamics are dominant throughout the phase space, and system (1)
can be interpreted as a regularly perturbed, non-autonomous problem.

We establish the existence of a torus bifurcation using second-order averaging and
equivariant normal form theory in “Second-Order Averaging and a Torus Bifurcation
in the Regime w = O(1)” section in “Appendix 17, and we present the asymptotics
of the torus bifurcation parameter value atg (b, w, €) in “Asymptotic Expansion of
atB(b, w, £)” section in “Appendix 1”.
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Second-Order Averaging and a Torus Bifurcation in the Regime o = O(1)

In this section, we perform a standard second-order averaging analysis of system (1)
and use equivariant normal form theory in the regime w = O(1) to demonstrate that
there exists a smooth function a = atg (b, w, ) at which the system possesses a torus
bifurcation in which a stable two-torus is born. First, we change variables so that the
fold is located at the origin: (X, y) = (1 —x, y+ %) and o« = a — 1. The fvdP equation

transforms to
~/ 1 ~3

S 2 :
X =—y+x"—=x
Y 3
v =& (X +a+bcosh)
0 =w.
Then, to carry out the second-order averaging analysis, it is natural to use the following

scaling, which comes from the central chart of the desingularisation, or blow-up,
analysis used in Sect. 4 and in Krupa and Szmolyan (2001):

F=4ex, y=¢ey, b=4+eh, a=.cqa,

and to rescale time by t —> wt. Hence, after dropping the bars, the system has the
following non-autonomous form:

8 82
X=— (—y+x2) ——x

¢ 3w (44)
y = ;(x—koz—l—bcos(to—i-t)),

where § = /e. The choice of 1y has no effect on the analysis.

Next, we apply the near-identity change in variables used in second-order averaging
(Guckenheimer and Holmes 1983; Sanders and Verhulst 1985), so that system (44)
transforms into

. 82 N
f==(-0+8) - 6 + 06 6.10)
@ (45)

Sl>»g|>

£ =— (& +a)+ 0@,

with é(%‘ 1,62,1,8) = O (83). We label (45) as the ‘intermediate’ system; itis smoothly
conjugate to the original system.
We are interested in the averaged system,

F) §2
— (—y +i2) - —x
w 3w

5 _
—(x+a).
1)

=
Il

(46)

<.
Il

This system has a unique S! equivariant normal form (Golubitsky et al. 1988) due to
its symmetry properties. Moreover, the time-7 map of this normal form must be the

@ Springer



J Nonlinear Sci

S! normal form of the time-7 map, since the two operations commute and since S!
equivariant normal forms are unique. Let 5 denote the Poincare map of this normal
form. At @ = 0, the eigenvalues of the map s satisfy the non-resonance condition:
they are not equal to the first four strong resonant eigenvalues. Also, the second
Lyapunov coefficient is negative; in fact, for the averaged system, the second Lyapunov
coefficient is known to be K3, where K < 0 is a constant. Hence, at « = 0, the map
5 satisfies the basic hypotheses of the Hopf bifurcation for maps; see conditions A
and B, respectively, and Theorem 2 of Lanford (1973). Therefore, at « = 0, the map
5 undergoes a non-degenerate, supercritical Hopf bifurcation in which a normally
hyperbolic invariant circle is created. Hence, one also sees directly that the averaged
system (46) undergoes a torus bifurcation at « = 0 in which the limit cycle becomes
unstable and a stable invariant torus is created.

We now demonstrate that the full system (44) undergoes a torus bifurcation at some
atp near « = 0, in which a stable invariant torus is created. In particular, we show
that the Poincare map s of the full system (44) possesses an invariant circle §-close to
the one of s.

First, we observe that the same near-identity coordinate change employed above
to put the averaged system (46) into its S! equivariant normal form also puts the
intermediate system (45) into its S' equivariant normal form, up to and including
O(82). Let s;(z) denote the Poincare map of this normal form. Again, this map must
be the time-T map of the normal form, due to uniqueness in the S' equivariant case.
Next, we observe that, by standard second-order averaging theory, the Poincare maps
are close, i.e. on time intervals of length O(1/§),

Isi(z) —5(2)] = O(F).

In fact, for each « sufficiently small, the map s; is part of exactly the type of one-
parameter family of maps studied in Lanford (1973), with the map of the averaged
system being the ‘unperturbed’ map. Hence, for some « near « = 0, the map s;
also undergoes a non-degenerate, super-critical Hopf bifurcation in which a normally-
attracting invariant circle is created.

Finally, we observe that the time-7 maps s and s; are smoothly conjugate. Hence,
it follows that the map s of the original system (44) also has a non-degenerate Hopf
bifurcation and therefore that the original vector field (44) has a torus bifurcation at
some aTp near zero, in which an attracting invariant torus is created. This concludes
the demonstration.

Remark 7 One boundary of the parameter « for the existence of an invariant torus for
the full system is given by the birth of the canard regime.

Asymptotic Expansion of atg (b, w, ¢)
In this section, we present the asymptotic expansion of a = atp (b, w, ¢) for small b.

The unforced vdP equation has an equilibrium at (x, y) = (a, f(a)), which undergoes
a Hopf bifurcation at @ = 1. This corresponds to a periodic orbit of (1) at b = 0 which
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undergoes a torus bifurcation at a = 1. We seek periodic solutions of (1) as an
asymptotic series in b, i.e. let

x(t) =D br(0), y6) =D brw).

k=0 k=0

Substitution into (1) yields

X0 = yo — f(x0),
yo = &(a — xop),

at leading order, which is the planar van der Pol equation. This has an equilibrium at
(x,y) = (a, f(a)). The O(b') system is

X1 =y1 — f'(x0) x1,
y1 = &(—x1 + cos wt).

The O(b") system is linear with solutions that are linear combinations of cos wz, sin wt,

and exp(rr), where 24 = 1 — a® &+ /(1 — a?)2 — 4.
Remark 8 Note that when a = 1 and w = /e, there is a resonance.

When a damped oscillator is driven with a periodic forcing function, the result may
be a periodic response at the same frequency as the forcing function (see Fig. 13a).
Since the unforced oscillation is dissipated due to the damping, it is absent from the
steady state behaviour. Thus, we seek periodic solutions of the O(b') system of period
T = %’ The solutions are

(a2 — 1) cwsin(tw) + ¢ (8 — a)z) cos(tw)
(a® — 1)20)2 + (e — w2)2
£ ((a2 — 1) ecos(tw) + w (a4 —2a% —e+* + 1) sin(ta)))

(@2 =17 + (£ — ?)’

x1(t) =

)

@) =

We now compute the stability of a periodic solution of (1). Let (x,, y,) denote the
periodic solution and let (u, v) = (x — x,, y — y,) be a perturbation of this orbit.
Then the perturbations evolve according to

7 Len 2 0 1pem 3
(z) = Df(x,,y)) (:) _ <2f (xy)u —g g f" (xy)u ) ’

where the Jacobian evaluated along (x,,, y, ) is the T-periodic matrix:
—f'(xy) 1
Df(x}/ay]/)z( _8)/ 0 .
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The Floquet multipliers p; and p; satisfy

T
P1p2 = exp (/ tr Df (xy, yy)dl) .
0

A Neimark—Sacker bifurcation occurs when the multipliers are p = e for some
w. That is, a torus bifurcation occurs when fOT tr Df (x,, y,)dt = 0. This gives the
following relation between a, b, ¢, and w for the location of the torus bifurcation:

| — a2 1 b? &?

Ty @12 ¥ e—a?)? 0- “47)

Comparisons between the theoretical prediction above and the results of numerical
continuation simulations show good agreement for the indicated parameter regions.
Divergence from the above perturbation analysis occurs precisely at the resonances
(figures not shown).

Remark 9 Note that (47) is accurate up to terms of order O(b3). That is, there are no
order O(b?) corrections in (47) from the b%x, terms in the asymptotic expansion due
to symmetry. More precisely, symmetry considerations give

T
—2ab? / xp dt = 0.
0

Appendix 2: Proof of Lemma 6.2

The proof is split into three steps. First, we consider the simplest case in which N = 1
in (40). Next, we prove the Theorem for N = 2, and finally, we prove it for general
N in (40). The near-identity coordinate change employed in the following proof is
similar to the near-identity coordinate changes typically used in the general theory of
averaging (Sanders and Verhulst 1985).

Step 1. With N = 1, the relevant transformation (40) between r and p is:
r =g+ pe?. (48)

Differentiating (48) with respect to time, substituting in (37), and Taylor expanding
F(¢o + pe?', 6, z) about ¢, we obtain

p = (—oo + F($0,0,2)e” " + p(=¢16 + Fr (0. 0, 2)) + 0(p?). (49)

Hence, based on the form of the two sets of terms in parentheses in the right member
of this equation, we are naturally led to study the following system of two ordinary
differential equations with two unknown parameters:

b0.6 = F(¢0, 0, 2) + roe?

(50)
1.0 = Fr(go,0,2) + A
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In this manner, proving the result for N = 1 is now equivalent to finding A¢ and |
for which there exist ¢y and ¢; which are 27 periodic and which satisfy the equation
(50).

According to general theory of differential equations, for every pair (Ao, A1), there
exists a unique solution (¢o, ¢1) of (50) satisfying the initial conditions ¢¢(0) = 0
and ¢1(0) = 0. Such solutions must satisfy the integral equations,

6 0
$o(0) = / F(po(v), v, 2)dv + )»0/ RAQES
. ’ 51)

]
$1(6) =/0 Fu (o), v, 2)dv + 116

Also, in terms of these integral equations, the conditions for periodicity of ¢g and ¢
(with respect to ) are

2 o
0= / F(¢po(v), v, z)dv + )\O/ RAQFEN
0 ’ (52)

2
0= / Fo(do(v), v, 2)dv + 2721,
0

Based on the above formulation of the integral equations, it is useful to define
H: R x R? — RZ, as follows:

_ 0271 F(¢o(v), v, 2)dv + A9 f02” 1M gy

_ [ Ho(z, Ao, A1)
Pz R0, 1) = (m(z, xo,m) ‘( Jo Fr (o), v, dv + 274

(53)
Now, by the assumptions (H1) and (H2) (see (39)), 1o = 0, A1 = 0, and z = O is
a solution of (51) with ¢p = 0 and ¢1 9 = f09 F-(0, v, 0)dv. We now verify that the
assumptions of the implicit function theorem are satisfied to show that there is a branch
of non-trivial solutions emanating from this trivial solution. In particular, we verify
that DH (0, 0, 0) is non-singular, by showing that det D’H (0, 0, 0) = (27)2.
From the definition, we see that Hj ;,(0,0,0) = 2x. We will now show that
Ho,»,(0,0,0) = 0 and Hp 3,(0,0,0) = 27. To show that Hy ;,(0,0,0) = 0, we
start with

2
Hox, (0,0,0) = /0 F,(0, 0, 0o, (6)d6.

Then, using (50), we obtain

2 d
Ho,, (0,0, 0) =/o @%,M(@)d@ = ¢0,5, (27) — ¢0,2,(0).
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By assumption (above formula (51)), ¢o(0) = 0 and ¢;(0) = O for Ap and A;. Hence,
$0,2,(0) = 0 for j = 1, 2. Therefore, we conclude from (50) that ¢, 1, = 0, so that
this entry of the Jacobian of H vanishes, as claimed.

Next, we show that Hy ;,(0, 0, 0) = 27. By an argument similar to the above,

HO,)LO (09 O’ O) = ¢0,)\40 (27[) - ¢0,)\0 (O) = ¢0,)\40 (27[)

Therefore, from (50), we obtain

d
W (#0,0) = Fr(0,6,0)¢0,5, + €. (54)

Observe that, for Ag = 0 and A = 0, we have d¢/d0 = F,(0, 6, 0). Hence, (54) is
equivalent to

d d¢i

EY) (450,/\0) =40

a0 $0.2 + 7' (55)

from which it follows that
% (d0.008™%) = L.
Finally, since ¢y ;,(0) = 0, it follows from (39) that ¢ ;,(27) = 2. Therefore,
det(DH(0, 0)) = (27)?,

and by the implicit function theorem, there is a branch of periodic solutions ¢ and
¢1 for each (Ao, A1) sufficiently small, emanating from the trivial solution. Therefore,
by (49) and (50), one has the equation

p=—2ro — Ao+ O(p?),

which establishes (41) in the case N = 1. This completes the proof of the Lemma for
the case N = 1.

Step 2. We now show that the lemma holds for N = 2 in (40). All quantities are
expanded up to and including p>. For the vector field F, we have

F(r.8,2) = F(do, 0, 2) + pF (o, 0, 2™ + p>(Fy(do. 6. )b
+ %Fw(qbo, 8, 2)¢™) + O(p?). (56)

Also, differentiating (40) for N = 2 with respect to ¢, we find
F =6 +2p42) + P00 + pe? 1o+ p 26 (57)
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Hence, combining (56) and (57), we get

H(1+2pgoe ™) = (—¢oo + F(do, 0,2)e™ " + p(—¢1.0 + Fr (¢, 0, 2))

2 ! 201091 3
+ p* (=204 Fr (o, 0, Z)¢2+5Frr(¢07 6, 2)e” e " +0(p”).
(58)
Now, after multiplying both sides of (58) by (1 4+ 2p¢re~?1)~!, we examine the
structure of the terms at each order of p°, p', and p2. This suggests that we analyse
the following system of differential equations:

b0 = F (o, 0, 2) + roe?!
b0 = Fr(¢o.60.2) — 2h0¢ne ' + 1y (59)

1
$20 = Fr(¢0. 0, )2 + 3 Frr(0. 6, 2)e? — 2h1¢ + Age?l.

The first equation here is equivalent to the first equation in (50); the second has an
additional term due to ¢;; and the third is new. If we can find a branch of non-trivial
solutions of this system, then we can transform the general fast system into the desired
form up to and including O(p?).

As above, we look for 27 periodic solutions. However, before extending the defi-
nition of H, we rewrite the third component of (59) as follows:

d 1
o (poe™1) = 5 Frr (90,6, 2?4 2h0¢5e 2 —3n e P + 2y, (60)

Now, we define 7: R x R? — R3 in a manner similar to that employed in Step 1:

Ho(z, Ao, A1, A2)
H(z, ko, A1, A2) = | Hi(z, Ao, A1, A2)
Ha(z, Ao, A1, A2)

JZ F(go(v), v, 2)dv + Ao 37 e dv
2T (Fr(o(v), v, 2) — 2h0pa (e~ P)dv +2h,
15T G Fr(@o(v), v, 20e?1) 1230 (1) 721 0) — 311 g (v)e =41 +2)dy
(61)
We analyse H in much the same manner as in Step 1. Observe that, at z = 0, we
have Ao = 0 and A; = 0. However, 1, is in general given by

1 /271
Ay = —— —Fr (0, v, 0)e?1Mdy,
2 0 2

and not zero.

We now show that the off-diagonal elements of the Jacobian of H vanish. First,
an argument similar to that used in Step 1 shows that Hy ;, (0, 0,0, A5 9) = 0. We
also need to show that Ho 3,(0,0,0,420) = 0 and H; 3,(0,0,0,129) = 0. To
this end, we prove that ¢ 3,(0, 0, 0, A2,0) = 0 and ¢1,,,(0, 0,0, A2,0) = 0, because
then the identities Hp ;,(0, 0,0, A2,0) = 0 and H; ,,(0,0,0,129) = O follow in
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a straightforward way. We carry out the proof for ¢y ;,; the argument for ¢, is
similar. Differentiating the first equation in (59) with respect to A, and using the fact
that A9 |;—0 = 0, we obtain

d¢0,)»2
do |,

= Fr(0,6,0)¢0,3,:=0- (62)

The claim now follows from the assumption ¢ (0, z, Ao, A1, A2) = 0.
Based on the above analysis, it follows that

det(D'H(0, 0,0, 0)) = Ho,5,(0,0,0,0)H 1, (0,0,0,0)H>,,(0,0,0,0),

and an argument similar to the one used in Step 1 shows that this determinant is
nonzero. In particular, Hy 3, (0, 0, 0, 0) and H; 3, (0, 0, 0, 0) are both 27 by a simi-
lar calculation. To show that also H> ;,(0, 0, 0,0) = 2m, we differentiate the third
component in (61) to obtain

2
H.1,(0,0,0,0) = / dv = 27
0

Hence, we may again use the implicit function theorem to conclude that there exists a
branch of non-trivial solutions of (59), and the system may be put in the desired form
of (41) up to and including terms of p2. This completes the proof of Lemma 6.2 for
the case N = 2.

Step 3. In this third and final step of the proof, we show that the lemma holds for
general N in (40). We begin by writing

N

F(r,0,2) =D p/Fi(do, $1, ..., ¢n.0.2) + 0(p" ™), (63)
j=0

where N > 2 is a natural number and r and p are related by formula (40) associated
with this choice of N. For each j, the functions F; are complicated expressions
involving ¢o, @1, ..., ¢;. To simplify the notation, we write ®; = (¢o, ¢1, ..., P;).
We will give a more precise description of the functions F; below. The equivalent of
(58) is now

N
p (1 + le"1¢ze‘¢l) =(—0.0 + F(¢o, 0, 2)e™? + p(—=1.6 + Fr(¢o, 0, 2)
=2
N .
+ 3"l (=jo + Fj(@5,6.2)e™ + OV,
=2
] (64)
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Let g = 1 and for each j > 1 set

I, 1
. — —9/
@0 ) = 0 (1 +35 1p11¢,e¢1> =0

Note that, for given j, o depends on ¢, ¢1, ..., ¢;+1. We also write

Eo = (0.0 + F (. 6,2))e™"
E1 = —¢1.0 + Fr(¢0, 6, 2)
Ey = (=20 + F2(2,60,2))e” (65)

Eny = (=¢no + Fn(Py.60,2)e™.
It follows that (64) may be written in the following compact and insightful manner:
N l
p=2 0" [ DaiEij | + 00", (66)

=0 j=0

We now define the set of equations

Ey =)o
Ei4+a1Ey =M
Er+o1Er+arEyg = Ao
(67)
N
z aj EN,]‘ = AN.
j=0
This enables us to rewrite (65) as follows:
Ey = X
Ey=x —aihro
Ep = Jy — ik + (o — a2)ho
(68)
N
Ex =) Bin-j,
Jj=0
where By = 1 and By, ..., By are coefficients depending on «, ..., . Moreover,
B;j depends on «, . . ., a; only. Therefore, we have arrived at the following system of

differential equations:
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b0 = F (0, 0. 2) + roe?”"
$1,0 = Fr(¢o,0,2) + A1 —a1ho
$20 = F2(P2,0,2) + (k2 — arhy + (@f — a2)ro)e”
(69)
N
¢n.o = Fn(®n.0.2)+ [ D Birn-j | e,
j=0
which is the analog for general N of the systems of differential equation (50) for
N =1 and (59) for N = 2.

Before defining H, we rewrite (69) in a manner similar to that which was used
above to rewrite (59) (recall also (60)). Noting that

Fi(®;,0,2) = Fr(¢o,0,2)p; + R(P;-1),
we replace the jth equation in (69) by
d J
3 (4767) = R(@j 0™ = G —ero)gie " + | D pidjr | (T0)
1=0

We will now define the function H in a manner analogous to (53) and (61) used in
Steps 1 and 2, respectively, for the cases N = 1 and N = 2. We let

(00,2, A1, AN), 10, 2, A1, s AN, oo N (O, 2, A0, - AN))
be the solutions of (69) depending on the parameters z and A, . . ., Ay that satisfy the

initial conditions ¢; (0, z, A1, ..., Axy) =0, j =0, 1, ..., N. Further, we let Ho, H1,
and H, be defined as in Step 2, and let

Hj(z, Moy ALy - v s AN)
2 J
= / 'R((I)j_])e*q51 —(A — 0{1)\())(1)./'37(151 + Zﬂ[)»j_[ dv, j=2,3,...N.
0 1=0
(71)
We first argue that we can solve the set of equations 7;(0, Ao, ..., An), J =

0,1,..., N, for a unique N-tuple (Xo,0,A1,0,-..,An0). Note that oo = 0 and
A1,0 = 0, by the same analysis used in Step 2. Hence,

J j—2
> Bikjkl=0=D_ Bihjkl=0-
k=0 k=0
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We argue by induction. Suppose that Ago,...,Aj—10 and the corresponding
@0, - .., ¢j—1 are determined. Note that A ; o must satisfy
2 =2
Ao = _/0 R(D,_1)e " + ij_l,o dv. (72)

=1

Since the right member of (72) depends only on Ag, ..., A;_1 and ¢, ..., ¢;_1, the
value of A; ¢ is uniquely determined. Similarly, knowing A ; o, we can solve (70) for
¢ using (70) due to the fact that Ao = A1 = 0, so that right member of (70) depends
only on Ag,...,A;_1and ¢, ..., ¢; 1. Hence, ¢; is uniquely determined.

We now prove that D;,, ;,H(, Ao, ..., An,0) is non-singular. First, we prove
that ¢; ), |,—=0 =Oforany j € {0,...,N—1}andk € {j + 1, ..., N}. The argument
for j = 0and j = 1 is analogous as in the case of n = 2. For general j, we proceed by
induction, assuming that the claim holds for 0, 1, ..., j — 1. The argument is, again,
similar to that used in the case N = 2. We differentiate (70) with respect to A and
use the induction assumption, the fact that 8; is independent of ¢; forany / > j + 1,
and the fact that 19,0 = A1,0 = 0. This gives

d
— @30, %0,0,....An,0) =0. (73)
do
By assumption, ¢; (0, z, Ao, ..., Ay) = 0. Hence, the claim follows. Now, differenti-
ating (71) and using a similar procedure, we obtain 7 5, (0, 0,0, . . ., An,0) = O for

je{0,...,N—1}andke{j+1,...,N}.

It remains to prove that ’Hj,,\/. 0, 20,0,--.,An0) # O for j € {0,..., N}. The
proof for j = 0 and 1 is as above. Let j > 1. Again by differentiating (71), now with
respect to A, and arguing analogously as above, we obtain

2
H.,',)Lj 0, 20,0, ---,AN0) = / dv = 2m. (74)
0
We can now apply the implicit function theorem to obtain the functions Ag(z), ..., A;
(z) as required. This completes the third (and final) step of the proof of the lemma.
O

References

Baer, S., Erneux, T.: Singular Hopf bifurcation to relaxation oscillations. SIAM J. Appl. Dyn. Syst. 46,
721-739 (1986)

Benes, G.N., Barry, A.M., Kaper, T.J., Kramer, M.A., Burke, J.: An elementary model of torus canards.
Chaos 21, 023131 (2011)

Benoit, E.: Canards et enlacements. Inst. Haut. Etud. Sci. Publ. Math. 72, 63-91 (1990)

Benoit, E., Callot, J.-L., Diener, F., Diener, M.: Chasse au canard. Collectanea Mathematicae 31-32, 37-119
(1981)

Bold, K., Edwards, C., Guckenheimer, J., Guharay, S., Hoffman, K., Hubbard, J., Oliva, R., Weckesser,
W.: The forced van der Pol equation II: canards in the reduced system. SIAM J. Appl. Dyn. Syst. 2,
570-608 (2003)

@ Springer



J Nonlinear Sci

Braaksma, B.: Critical Phenomena in Dynamical Systems of van der Pol type, Ph.D. thesis, University of
Utrecht (1993)

Brons, M., Krupa, M., Wechselberger, M.: Mixed mode oscillations due to the generalized canard
phenomenon. In: “Bifurcation Theory and Spatio-Temporal Pattern Formation”, Fields Institute Com-
munications, vol. 49, pp. 39-63. American Mathematical Society, Providence, RI (2006)

Burke, J., Desroches, M., Barry, A.M., Kaper, T.J., Kramer, M.A.: A showcase of torus canards in neuronal
bursters. J. Math. Neurosci. 2, 3 (2012)

Cartwright, M.L.: Forced Oscillations in Nonlinear Systems Contrib. to Theory of Nonlinear Oscillations
(Study 20), pp. 149-241. Princeton University Press, Princeton (1950)

Cartwright, M.L., Littlewood, J.E.: On non-linear differential equations of the second order: I. The equation
V—k(l — yz))'l + y = bik cos(rt + a); k large. J. Lond. Math. Soc. 20, 180—189 (1945)

Delshams, A., Seara, T.M.: An asymptotic expression for the splitting of separatrices of the rapidly forced
pendulum. Comm. Math. Phys. 150(3), 443-463 (1992)

Delshams, A., Seara, T.M.: Splitting of separatrices in Hamiltonian systems with one and a half degrees of
freedom. Math. Phys. Electron. J. 3, 4 (1997)

Desroches, M., Krauskopf, B., Osinga, H.M.: The geometry of slow manifolds near a folded node. SIAM
J. Appl. Dyn. Syst. 7, 1131-1162 (2008)

Desroches, M., Krauskopf, B., Osinga, H.M.: Numerical continuation of canard orbits in slow-fast dynamical
systems. Nonlinearity 23, 739-765 (2010)

Desroches, M., Guckenheimer, J., Kuehn, C., Krauskopf, B., Osinga, H.M., Wechselberger, M.: Mixed-
mode oscillations with multiple time scales. SIAM Rev. 54, 211-288 (2012)

Desroches, M., Krupa, M., Rodrigues, S.: Inflection, canards and excitability threshold in neuronal models.
J. Math. Biol. 67, 989-1017 (2013)

Diener, M.: The canard unchained or how fast—slow systems bifurcate. Math. Intell. 6, 38—49 (1984)

Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Oldeman, K.E., Paffenroth, R.C., Sanst-
ede, B., Wang, X.J., Zhang, C.: AUTO-07P: Continuation and Bifurcation Software for Ordinary
Differential Equations. http://cmvl.cs.concordia.ca/ (2007)

Dumortier, F., Roussarie, R.: Canard cycles and center manifolds. Mem. Am. Math. Soc. 577 (1996)

Dumortier, F., Roussarie, R.: Geometric singular perturbation theory beyond normal hyperbolicity. In: Jones,
C.K.R.T., Khibnik, A.I. (ed.) Multiple Time Scales Dynamical Systems, IMA Volumes in Mathematics
and its Applications, vol. 122, pp. 29-64 (2001)

Eckhaus, W.: Relaxation oscillations including a standard chase on French ducks. Lect. Notes Math. 985,
449-494 (1983)

Erchova, 1., McGonigle, D.J.: Rhythms of the brain: an examination of mixed mode oscillation approaches
to the analysis of neurophysiological data. Chaos 18, 015115 (2008)

Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Egs. 31,
53-98 (1979)

Flaherty, J.E., Hoppensteadt, F.C.: Frequency entrainment of a forced van der Pol oscillator. Stud. Appl.
Math. 58, 5-15 (1978)

Gelfreich, V.G.: Melnikov method and exponentially small splitting of separatrices. Phys. D 101, 227-248
(1997)

Golubitsky, M., Stewart, 1., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory. Springer,
Berlin (1988)

Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector
Fields. Springer, Berlin (1983)

Guckenheimer, J., Hoffman, K., Weckesser, W.: The forced van der Pol equation I: the slow flow and its
bifurcations. SIAM J. Appl. Dyn. Syst. 2, 1-35 (2003)

Haiduc, R.: Horseshoes in the forced van der Pol system. Nonlinearity 22, 213-237 (2009)

Han, X., Bi, Q.: Slow passage through canard explosion and mixed-mode oscillations in the forced Van der
Pol’s equation. Nonlinear Dyn. 68, 275-283 (2012)

Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10, 11711266 (2000)

Izhikevich, E.: Synchronization of elliptic bursters. SIAM Reyv. 43, 315-344 (2001)

Jones, C.K.R.T.: Geometric singular perturbation theory. In: Johnson, R. (ed.) Dynamical Systems. Lecture
Notes in Mathematics, pp. 44—120. Springer, New York (1995)

Kramer, M.A., Traub, R.D., Kopell, N.J.: New dynamics in cerebellar Purkinje cells: torus canards. Phys.
Rev. Lett. 101, 068103 (2008)

@ Springer


http://cmvl.cs.concordia.ca/

J Nonlinear Sci

Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points—fold
and canard points in two dimensions. SIAM J. Math. Anal. 33, 286-314 (2001)

Krupa, M., Wechselberger, M.: Local analysis near a folded saddle-node singularity. J. Differ. Equ. 248,
2841-2888 (2010)

Kuehn, C.: From first Lyapunov coefficients to maximal canards. Int. J. Bifurc. Chaos 20, 1467-1475 (2010)

Kuehn, C.: Multiple Time Scale Dynamics. Springer, Berlin (2015)
Lanford, O.E., III: Bifurcation of periodic solutions into invariant tori: the work of Ruelle and Takens. In:
Nonlinear Problems in the Physical Sciences and Biology, pp. 159-192. Springer, Berlin (1973)
Levi, M.: Qualitative analysis of the periodically-forced relaxation oscillations. Mem. AMS 32, 244 (1981)
Levinson, N.: A second-order differential equation with singular solutions. Ann. Math. 50(1), 127-153
(1949)

Mitry, J., McCarthy, M., Kopell, N., Wechselberger, M.: Excitable neurons, firing threshold manifolds and
canards. J. Math. Neurosci. 3, 12 (2013)

Roberts, K.-L., Rubin, J., Wechselberger, M.: Averaging, Folded Singularities, and Torus Canards: Explain-
ing Transitions Between Bursting and Spiking in a Coupled Neuron Model. SIAM J. Appl. Dyn. Syst.
14, 1808-1844 (2015)

Rotstein, H., Wechselberger, M., Kopell, N.: Canard induced mixed-mode oscillations in a medial entorhinal
cortex layer II stellate cell model. SIAM J. Appl. Dyn. Syst. 7, 1582-1611 (2008)

Rubin, J., Wechselberger, M.: The selection of mixed-mode oscillations in a Hodgkin—-Huxley model with
multiple timescales. Chaos 18, 015105 (2008)

Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Springer, Berlin (1985)

Sekikawa, M., Inaba, N., Yoshinaga, T., Kawakami, H.: Collapse of duck solution in a circuit driven by an
extremely small periodic force. Electron. Comm. Jpn. Part 3 88(4), 199-207 (2005)

Szmolyan, P., Wechselberger, M.: Canards in R3. J. Differ. Equ. 177, 419-453 (2001)

Szmolyan, P., Wechselberger, M.: Relaxation oscillations in R3. J. Differ. Equ. 200, 69-104 (2004)

Teka, W., Tabak, J., Vo, T., Wechselberger, M., Bertram, R.: The dynamics underlying pseudo-plateau
bursting in a pituitary cell model. J. Math. Neurosci. 1, 12 (2011)

van der Pol, B.: A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1, 701-710,
754-762 (1920)

van der Pol, B.: Forced oscillations in a circuit with non-linear resistance (reception with reactive triode).
Lond. Edinb. Dublin Phil. Mag. J. Sci. Ser. 7, 3, 65-80 (1927)

Vo, T., Wechselberger, M.: Canards of folded saddle-node type 1. SIAM J. Math. Anal. 47, 3235-3283
(2015)

Wechselberger, M.: Existence and bifurcation of canards in RR3 in the case of a folded node. SIAM J. Appl.
Dyn. Syst. 4, 101-139 (2005)

Wechselberger, M.: A propos de canards (apropos canards). Trans. Am. Math. Soc. 364, 3289-3309 (2012)

Wechselberger, M., Mitry, J., Rinzel, J.: Canard theory and excitability. In: Nonautonomous Dynamical
Systems in the Life Sciences, Lecture Notes in Mathematics, vol. 2102 (Mathematical Biosciences
Subseries) (2014)

@ Springer



	From Canards of Folded Singularities to Torus Canards in a Forced van der Pol Equation
	Abstract
	1 Introduction
	2 Low-Frequency Forcing: Canards of Folded Singularities, Especially of FSN I Points
	2.1 The Layer and Reduced Systems
	2.2 Folded Singularities and Singular Canards
	2.3 Canards of Folded Saddle-Node Type I Points

	3 Loci of the Maximal Canards for Low Forcing Frequencies
	4 Loci of the Torus Canards and Their Folds for Intermediate- and High-Frequency Forcing
	5 Secondary Canards
	5.1 Continuation of Secondary Canards
	5.2 Growth of Large-Amplitude Oscillations from Small-Amplitude Oscillations in the Secondary Canards

	6 The fvdP is a Normal Form for a Class of Systems Near Torus Canard Explosions
	7 Conclusions and Discussion
	Acknowledgments
	Appendix 1: Proof of the Existence of a Torus Bifurcation
	Second-Order Averaging and a Torus Bifurcation in the Regime ω= mathcalO(1)
	Asymptotic Expansion of aTB(b, ω, ε)

	Appendix 2: Proof of Lemma 6.2
	References




