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a b s t r a c t 

In this work we consider a general class of 2-dimensional hybrid systems. Assuming that 

the system possesses an attracting equilibrium point, we show that, when periodically 

driven with a square-wave pulse, the system possesses a periodic orbit which may un- 

dergo smooth and nonsmooth grazing bifurcations. We perform a semi-rigorous study of 

the existence of periodic orbits for a particular model consisting of a leaky integrate-and- 

fire model with a dynamic threshold. We use the stroboscopic map, which in this context 

is a 2-dimensional piecewise-smooth discontinuous map. For some parameter values we 

are able to show that the map is a quasi-contraction possessing a (locally) unique max- 

imin periodic orbit. We complement our analysis using advanced numerical techniques to 

provide a complete portrait of the dynamics as parameters are varied. We find that for 

some regions of the parameter space the model undergoes a cascade of gluing bifurca- 

tions, while for others the model shows multistability between orbits of different periods. 

© 2018 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Integrate-and-fire systems are hybrid systems that combine continuous dynamics with discrete resets that occur when-

ever the variables of the system satisfy a given condition (that defines a threshold). Such systems are widely used in neuro-

science to model the dynamics of neuron’s membrane potential, as the continuous dynamics models subthreshold behaviour

(corresponding to the input integration) and resets represent neuron spikes (characteristic rapid changes in membrane po-

tential). They can be seen as simplified versions of slow-fast systems, as the resets replace large amplitude oscillations that

occur at a much faster time-scale. 

Examples of such systems range from simple one-dimensional models as the leaky integrate-and-fire [1] , which models

simple repetitive spiking, to nonlinear 2-dimensional ones exhibiting more complicated behaviour, such as the Izhikevich

quadratic model [2] , or the adaptive exponential model [3] . Of special interest for this paper are 2-dimensional models

consisting of an integrate-and-fire model with a dynamic threshold – the threshold is treated as a variable with nonlinear

dynamics. These type of systems have been used to model spike threshold variability observed in different areas of the

nervous system [4] , in particular for phasic neurons (those that do not respond repetitively to steady or slowly varying

inputs) in the auditory brainstem [5–7] . 
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A general framework to study the dynamics of hybrid systems becomes difficult to obtain, even when the input currents

are assumed to be constant (the system remains autonomous), mainly because they are discontinuous due to the reset con-

dition. One of the most common strategies in the nonsmooth literature (see [8,9] ) is to smooth the dynamics by considering

the so-called impact map (also known in neuroscience as firing phase map or adaptation map ) defined on the threshold where

the reset condition is applied [10–13] . However, the impact map does not allow one to study itineraries or trajectories that

do not hit the threshold and has some domain restrictions. 

In more realistic situations one considers periodic inputs, making the analysis more complicated. Indeed, in the non-

autonomous case, even one-dimensional integrate-and-fire systems exhibit very rich dynamics [13–15] . Recent works show

how theory for nonsmooth systems can be used to obtain model-independent general results [16–18] . However, these are

limited to one-dimensional systems exhibiting simple subthreshold dynamics, as they are based on the theory for circle

maps (see [19] for a recent review). 

In this work we study 2-dimensional hybrid systems subject to periodic forcing. In particular, we consider an input con-

sisting of a square-wave pulse of period T , which can be seen as a simplified model for a periodically varying synaptic

current in neuroscience [20] while is widely used in electronics (PWM), amongst others. Our goal is to provide a descrip-

tion of the dynamics to determine the firing patterns that arise in the forced system. Assuming that the unforced system

possesses an attracting equilibrium point, we show that, when periodically driven, the system possesses a T -periodic or-

bit which may undergo smooth-grazing or nonsmooth-grazing bifurcations as the amplitude of the forcing increases and

collides with the threshold. To study these bifurcations, we use the stroboscopic map (or time- T map), which becomes a

2-dimensional piecewise-smooth discontinuous map. Indeed, the map is defined differently depending on the number of

times the corresponding trajectory of the time-continuous system hits the threshold, thus showing discontinuities along the

so-called switching manifolds . An orbit of the time-continuous system undergoing a smooth or a nonsmooth grazing bifurca-

tion with the threshold corresponds to a fixed point of the stroboscopic map undergoing a border collision bifurcation when

hitting the switching manifold , which we study in detail. 

Beyond the fixed points we study other periodic orbits of the stroboscopic map ( nT -periodic orbits of the time-continuous

system), as well as their itineraries (sequence of regions in the domain of the stroboscopic map visited by the periodic or-

bits), and their bifurcations. Notice that in this case, the theory for smooth maps does not apply to describe its dynamical

properties. Unfortunately, there are little theoretical results to describe these orbits for the cases of maps of dimension

higher than 1, in which case one relies on classical results for circle maps [21] . In this paper we recover a result in this

direction by Gambaudo et al. in the 80’s [22,23] . The theorem establishes conditions for the existence of periodic orbits

for a piecewise continuous map of any dimension and provides properties on the sequence of regions visited. We apply

this result to a particular model, a leaky integrate-and-fire model with a dynamic threshold. By means of semi-rigorous

numerical arguments we can prove that for certain parameter values the stroboscopic map becomes a quasi-contraction

possessing maximin (locally) unique periodic orbits. That is, their symbolic itineraries are contained in the Farey tree of

symbolic sequences [19] . In parallel, we use advanced numerical techniques to provide a complete portrait of the dynamics

as parameters are varied. Numerically, we find that for certain parameters the model undergoes a period-adding bifurcation

(an infinite cascade of gluing bifurcations [24] , up to our numerical accuracy), while for others the model shows multista-

bility between orbits of different periods. Our study allows us to assess the scope of the existing theoretical results. 

The paper is organized as follows. In Section 2 we present the general setting for hybrid 2-dimensional systems.

In Section 3 we introduce the stroboscopic map, which is a piecewise-smooth discontinuous 2-dimensional map. In

Section 4 we describe the border collision bifurcations of the fixed points, a type of bifurcation that can only occur in

piecewise-defined maps and in Section 5 we present existing theoretical results for the existence of periodic orbits of a

piecewise continuous map which step onto different regions. In Section 6 we use the previous results in combination with

numerical methods to describe the dynamics of a leaky integrate-and-fire model with a dynamic threshold. We modify pa-

rameters to illustrate different dynamical regimes exhibited by the model. Finally, the Appendix includes the details of the

numerical methods used to perform the computations along the paper. 

2. General setting 

Let us consider the system 

˙ z = f (z) + v I(t) , z ∈ R 

2 (1)

with v ∈ R 

2 (typically it will be chosen v = (1 , 0) T ), f : R 

2 → R 

2 a smooth enough function and I ( t ) a T -periodic square wave

given by 

I(t) = 

{
A if t ∈ ( nT , nT + dT ] 

0 if t ∈ (nT + dT , (n + 1) T ] . 
, n ∈ N (2)

Let us also consider a threshold manifold T in R 

2 given by 

T = 

{
(x, y ) ∈ R 

2 | h (x, y ) = 0 

}
, 



50 A. Granados, G. Huguet / Commun Nonlinear Sci Numer Simulat 70 (2019) 48–73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where h : R 

2 → R is a smooth function. We then submit system (1) to the following reset condition: whenever a trajectory

reaches the threshold manifold T at a time t = t ∗, the variables of the system are updated to a certain value, i.e. 

h (z(t ∗)) = 0 −→ z(t + ∗ ) = R (z(t ∗)) , (3)

where R is a reset (smooth) map: 

R : T −→ R 

2 . (4) 

We call 

R := R (T ) 
the reset manifold. The reset condition (3) is applied whenever a trajectory collides with the threshold manifold T . Following

the terminology in neuroscience, from now on, when this occurs we say that system (1) –(3) exhibits a spike. Although, these

spikes introduce discontinuities to the trajectories of system (1) , they are all well defined, as one just needs to apply the

map R whenever the threshold is reached. This induces a flow, 

φ(t; t 0 , z 0 ) , φ(t 0 ; t 0 , z 0 ) = z 0 , 

which, provided that sliding cannot not occur along the threshold manifold, is well defined. The flow however is discontin-

uous whenever T is reached and nonsmooth when the pulse I ( t ) is enabled or disabled. 

We are going to assume that for A = 0 , sytem (1) has an equilibrium point z ∗ ∈ R 

2 (see H.1 below). Then, we can define

the subthreshold domain as 

D = 

{ 

z ∈ R 

2 | h (z) · h (z ∗) > 0 

} 

. (5)

The subthreshold domain contains all points in one side of T (the same side that contains the equilibrium point for A = 0 ).

In many practical applications we will restrict this domain to points in the region delimited by the manifolds T and R . 

Given z ∈ D , we will say that its trajectory is subthreshold if φ(t; t 0 , z) ∈ D for all t ≥ t 0 . In particular, an invariant set is

subthreshold if it is contained in D . 

We assume that, for A = 0 , system (1) 

H.1 possesses an attracting equilibrium point z ∗ ∈ R 

2 , 

H.2 for any z ∈ D , trajectories are subthreshold, i.e. they do not exhibit spikes. 

Remark 1. Hypothesis H.2 could be removed at the price of increasing the complexity of the mathematical analysis (see

Remark 3 ), but we decided to keep it in order to make the presentation clearer. Moreover, we want to emphasize that it is

a realistic assumption. Indeed, in Section 6 we consider an integrate-and-fire model which does satisfy hypothesis H.2. 

3. The stroboscopic map 

3.1. Definition 

Since we consider a T -periodic forcing I ( t ) (see Eq. (2) ), we follow [16] and consider the stroboscopic map s : D → D

defined as: 

s (z) = φ(t 0 + T ; t 0 , z) . 

Note that system (1) –(3) is non-autonomous and, therefore, the stroboscopic map depends on the initial time, t 0 . However,

as t 0 provides a family of conjugated stroboscopic maps, we can assume t 0 = 0 from now on and abusing notation we write

s (z) = φ(T ; z) = φ(T ; 0 , z) . 

As detailed below, depending on the number of spikes exhibited by a solution φ( t ; z ) for t ∈ [0, T ), the stroboscopic map

becomes a different combination of smooth maps given by integrating Eq. (1) and applying the reset map (4) . Hence, this is

a piecewise smooth map. More precisely, let us define the sets (see Fig. 1 ): 

S n = 

{ 

z ∈ D | φ(t; z) exhibits n spikes for 0 < t ≤ dT 

} 

, n ≥ 0 . (6) 

Then, when restricted to S n , the map s becomes a fixed combination of maps alternating the integration of system (1) and

the application of the reset map R . Hence, s restricted to S n is as smooth as the map R and the flow of the vector field f , as

the sequence of impacts is fixed in S n . 

Remark 2. Notice that if φ( t ; z ) touches the threshold manifold T at t = dT , the point z will belong to S 0 or S 1 depending

whether we apply the reset condition or not. 

In this work we will mainly focus on orbits involving the sets S 0 and S 1 . For this reason, we first show how to define s

in these sets. We refer to Fig. 1 in order to illustrate what follows. 

If z ∈ S 0 , no spike occurs and s (z) becomes 

s (z) = s 0 (z) := ϕ 0 (T − d T ;ϕ A (d T ; z)) , (7)
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Fig. 1. Trajectories of system (22) –(24) with initial conditions in sets S 0 (red) and S 1 (green), plotted on top of the pieces S 0 , S 1 , S 2 where the stroboscopic 

map is defined. Boundaries �1 , �2 and �3 are computed using the algorithm described in Appendix A . Solid black curves correspond to the threshold 

manifold T and the reset manifold R . Parameter values for the system are c = 0 . 53 , V 0 = 0 . 1 , A = 2 , τ = 2 , T = 3 , � = 0 . 3 and b = 0 . 1 . (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where ϕA is the flow associated with the system ˙ z = f (z) + v A . 

In order to define the stroboscopic map in S 1 , we consider the maps 

P 1 : ∪ n ≥1 S n −→ T × T T 

z � −→ (ϕ A (t ∗; z) , t ∗) 
(8)

˜ R : T × T T −→ R × T T 

(z, t) � −→ (R (z) , t) 
(9)

˜ P 2 : R × T T −→ R 

2 

(z, t) −→ ϕ A ( dT − t; z ) 
(10)

P 3 : R 

2 −→ R 

2 

z �→ ϕ 0 (T − dT ; z) 
(11)

where T T := R /T Z and the symbol ̃  emphasizes that the domain of the map involves time. 

The map P 1 sends points in D to the threshold T by integrating the flow ϕA ; it returns the hitting point on T and

the time t ∗ needed by the trajectory to reach T . In principle, to relate P 1 with system (1) –(3) , its domain should be those

points in D for which 0 < t ∗ ≤ dT , which is contained in ∪ n ≥ 1 S n . However, the map P 1 can be extended to all points in D

whose flow ϕA ( t ; z ) reaches the threshold for some t ∗ > 0, independently on whether t ∗ ≤ dT or not (see Section 3.2 for more

details). This extension becomes specially useful for numerical purposes as well as to provide insight into the dynamics of

the stroboscopic map near the switching manifolds. 

The map 

˜ R is the reset map defined in (4) carrying on time. The map 

˜ P 2 integrates the flow ϕA with initial condition

at the reset manifold R for the remaining time until t = dT . Note that, similarly as for P 1 , ˜ P 2 can also be extended outside

its natural domain by letting t < 0 (see Section 3.2 for more details). Finally, the map P 3 is a truly stroboscopic map, which

integrates the flow ϕ0 for a fixed time T − dT . 

Since by hypothesis H.2 , spikes are only possible for A > 0 (that is, 0 < t ∗ ≤ dT ), then, for z ∈ S 1 , the stroboscopic map

becomes 

s (z) = s 1 (z) := P 3 ◦ ˜ P 2 ◦ ˜ R ◦ P 1 (z) . (12)

By considering ˜ P 1 the extended version (to R 

2 × T T ) of the map P 1 and recalling that spikes can only occur for 0 < t ≤ dT , if

z ∈ S n , n ≥ 1 the stroboscopic map becomes 

s (z) = s n (z) := P 3 ◦ ˜ P 2 ◦
(

˜ R ◦ ˜ P 1 
)n −1 ◦ ˜ R ◦ P 1 (z) . (13)

Then, the stroboscopic map can be written as the piecewise smooth discontinuous map: 

s (z) = 

{
s 0 (z) if z ∈ S 0 

s n (z) if z ∈ S n , n ≥ 1 

Remark 3. If one allows the system to exhibit spikes for A = 0 (i.e, hypothesis H.2 is not satisfied), then the stroboscopic

map can be similarly defined by reordering accordingly the sequence of maps ˜ P i and 

˜ R in Eq. (13) . Moreover, the map s

restricted to S n is still smooth as long as the sequence of maps is kept constant. 

Remark 4. The stroboscopic map is discontinuous even if one identifies the threshold and the reset manifolds: T ∼ R . Al-

though this would make trajectories of the flow continuous, the vector field (1) does not necessary coincide at the manifolds

T and R and hence the stroboscopic map would still be discontinuous. 
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Let us now study the border, �1 ⊂ D , that separates the sets S 0 and S 1 and hence becomes a switching manifold of the

stroboscopic map s (see Fig. 1 ). This border is formed by the union of points whose trajectories graze the threshold manifold

T . Such a grazing can occur in two different ways defining two different types of points in �1 : 

(i) Smooth Grazing: points whose trajectory is tangent to T . 
(ii) Nonsmooth Grazing: points whose trajectory is transversal to T exactly for t = dT . 

Provided that trajectories can only reach the threshold when A > 0, (condition H.2 ), nonsmooth grazing can only occur

for t = dT , at times when the pulse I ( t ) is disabled. However, trajectories may exhibit tangent grazing for 0 < t ≤ dT . 

As mentioned above, the switching manifold �1 can be split in two pieces according to i) and ii) : 

�1 = �S 
1 ∪ �NS 

1 , 

where 

�S 
1 = 

{ 

z ∈ D | z = ϕ A (t; z 0 ) , t ∈ [0 , t ∗] , 0 < t ∗ ≤ dT where z 0 and t ∗

are s.t. h (ϕ A (t ∗; z 0 )) = 0 , ∇h (ϕ A (t ∗; z 0 )) · d 

dt 
ϕ A (t ∗; z 0 ) = 0 

} 

, 

and 

�NS 
1 = { z ∈ D | h (ϕ A (dT ; z)) = 0 } . 

Remark 5. Similarly, one can define the boundaries �S 
i 

and �NS 
i 

with i > 1, which separate sets exhibiting more than one

spike. 

3.2. Virtual extension and contractiveness of the stroboscopic map 

The maps s 0 and s 1 can (in some cases) be extended to their “virtual” domains, S 1 and S 0 , respectively. In Section 6.2 we

will show that the extended maps will be used to numerically compute feasible fixed points and bifurcation curves by

means of a Newton method. Moreover, virtual extensions provide insight into the dynamics of the map in the actual domain.

For instance, virtual attracting fixed points of the map suggest that the dynamics in the actual domain pushes trajectories

towards them and therefore towards the switching manifold �1 . 

Clearly, by ignoring the reset condition, one can always smoothly extend s 0 to S 1 . That is, if z ∈ S 1 , then we extend s 0 

to S 1 by setting s 0 (z) = ϕ 0 (t − dT ;ϕ A (dT ; z)) , which is well defined. In words, “keep integrating system (1) with I = A for a

time dT even if the trajectory hits the threshold manifold T ”. 

Under certain conditions, one can also extend the map s 1 to S 0 . Let z ∈ S 0 and assume that there exists t ∗ > dT such

that ϕ A (t ∗; z) ∈ T . Then, although z 
∈ S 1 , s 1 is also well defined at such a point by letting t ∗ > dT in the definition of P 1 in

(8) and using t > dT when applying the map 

˜ P 2 defined in (10) , which will consist of integrating the flow ϕA backwards

for t = | dT − t ∗| . In words, “keep integrating system (1) with I = A as much time as needed until the trajectory hits the

threshold manifold T and reset. Then, integrate the flow of system (1) with I = 0 backwards in time the same amount time

by which dT was exceeded”. Note that, if z ∈ S 0 is close to �S 
1 
, then it may be that such t ∗ does not exist (the trajectory

never hits the threshold manifold for I = A ) and hence one cannot extend s 1 to S 0 . 

Regarding the contractiveness of s , we first discuss the map s 0 given in Eq. (7) . Recalling that for A = 0 system (1) pos-

sesses a unique attracting equilibrium point in D , this implies that ϕ0 is contracting in D . For A > 0 small, ϕA is also contract-

ing. By contrast, for larger values of A , ϕA may be expanding in D . If this is the case, this expansiveness can be compensated

by integrating ϕ0 for large enough time, T − dT , which occurs if dT is smaller enough than T so that we obtain ∣∣s 0 (z) − s 0 (z ′ ) 
∣∣ < 

∣∣z − z ′ 
∣∣. 

Regarding s 1 , the spike exhibited by trajectories of point in S 1 may introduce expansiveness to s 1 (see Appendix B for the

details on the computation of D s 1 ). Arguing similarly, this expansiveness can be compensated making dT smaller enough

than T so that the contracting flow ϕ0 is applied for large enough time. 

4. Border collisions of fixed points of the stroboscopic map 

By assumption H.1 , for A = 0 , system (1) –(3) possesses an attracting subthreshold equilibrium point, z ∗ ∈ D . Although

the periodic forcing I ( t ) is not continuous in t , averaging theorem [25] holds, as the system is Lipschitz in z . This implies

that, when A > 0 is small enough, system (1) –(3) possesses a T -periodic orbit, which is not differentiable at t = 0 ( mod T )

and t = dT ( mod T ) (recall that we assumed t 0 = 0 ). As its amplitude increases with A , this periodic orbit may undergo a

grazing bifurcation [26,27] if it collides with the boundary T when varying A . This corresponds to a fixed point z̄ 0 ∈ S 0 of

the stroboscopic map undergoing a border collision bifurcation [28] when colliding with �1 . In general, a bifurcation occurs

when a fixed point z̄ n ∈ S n , n ≥ 1 collides with �n +1 or �n . Following i) and ii) of Section 3.1 , we distinguish two different

types of border collision bifurcations: 



A. Granados, G. Huguet / Commun Nonlinear Sci Numer Simulat 70 (2019) 48–73 53 

Fig. 2. Scheme showing a periodic orbit of the system (1) –(3) (a,b) grazing tangentially the manifold T at the point p n and (c,d) grazing the manifold T at 

the non-differentiable point p n at time dT . These periodic orbits correspond to fixed points of the stroboscopic map hitting the manifold �S 
n (a,b) and the 

manifold �NS 
n (c,d). Panels (a,c) correspond to a collision of a point z̄ n −1 ∈ S n −1 with �n , while panels (b,d) correspond to a collision of the point z̄ n ∈ S n 

with �n . See Section 4 for more details. Solid black lines correspond to trajectories of the flow ϕA , while dashed black lines correspond to trajectories of 

the flow ϕ0 . Grey lines correspond to the reset manifold R and the threshold manifold T . 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Smooth grazing bifurcation : the T -periodic orbit of system (1) –(3) grazes tangentially T , and, equivalently, the fixed

point of the stroboscopic map collides with �S 
n , for some n ≥ 1. The fixed point can collide with �S 

n from two different

regions, namely, S n −1 and S n . When the fixed point z̄ n −1 ∈ S n −1 collides with �S 
n , the following equations are satisfied

(see Fig. 2 (a)): 

z̄ n −1 = ϕ A (−t 1 , p 1 ) = ϕ 0 (T − dT , ϕ A (dT − (t 1 + · · · + t n ) , p n ) (14)

with 

p 2 = ϕ A (t 2 , R (p 1 )) 
p 3 = ϕ A (t 3 , R (p 2 )) 

. . . 
p n = ϕ A (t n , R (p n −1 )) 

(15)

and 

( f (p n ) + v A ) · ∇h (p n ) = 0 

h (p 1 ) = h (p 2 ) = . . . = h (p n ) = 0 . 
(16)

While, when z̄ n ∈ S n collides with �S 
n the equation is 

z̄ n = ϕ A (−t 1 , p 1 ) = ϕ 0 (T − dT , ϕ A (dT − (t 1 + · · · + t n ) , R (p n )) (17)

and the other conditions (15) –(16) as before (see Fig. 2 (b)). 

Remark 6. Notice that we assume that the smooth grazing with the manifold T occurs after the last spike (this will be

the situation in the example considered in Section 6 ). In general, this is not necessary the case, and similar equations

can be written for other situations. 

2. Nonsmooth grazing bifurcation : the T -periodic orbit of system (1) –(3) grazes T at the non-differentiable point given by

t = dT , and, equivalently, the fixed point of the stroboscopic map collides with �NS 
n , for some n ≥ 1. The fixed point can

collide with �NS 
n from two different regions, namely, S n −1 and S n . When the fixed point z̄ n −1 ∈ S n −1 collides with �NS 

n ,

the following equations are satisfied (see Fig. 2 (c)): 

z̄ n −1 = ϕ A (−t 1 , p 1 ) = ϕ 0 (T − dT , p n ) (18)
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with 

p 2 = ϕ A (t 2 , R (p 1 )) 
p 3 = ϕ A (t 3 , R (p 2 )) 

. . . 
p n = ϕ A (dT − (t 1 + · · · + t n −1 ) , R (p n −1 )) 

(19) 

and 

h (p 1 ) = h (p 2 ) = . . . = h (p n ) = 0 . (20)

While, when z̄ n ∈ S n collides with �NS 
n the equation is 

z̄ n = ϕ A (−t 1 , p 1 ) = ϕ 0 (T − dT , R (p n )) (21)

and the other conditions (19) –(20) as before (see Fig. 2 (d)). 

In Section 6 we compute (for a particular example) the critical parameter values at which the fixed points z̄ 0 and z̄ 1 un-

dergo border collision bifurcations when colliding with �1 and �2 (the latter, only for z̄ 1 ) by means of solving numerically

(using a Newton method) the systems of equations given above. 

After a border collision bifurcation of a fixed point in S n colliding with �NS 
n +1 

, it is expected that the map will map points

in S n to points in S n +1 and viceversa, thus causing the dynamics to alternate between S n and S n +1 . Therefore, it is possible

that there appear periodic orbits of the stroboscopic map hitting both regions S n and S n +1 . In the next section, we will

provide techniques to study such periodic orbits. 

5. Periodic orbits of the stroboscopic map 

Beyond the fixed points, we also study periodic orbits of the stroboscopic map s . Assume that the fixed point z̄ n of s

collides with �NS 
n +1 

for some parameter value undergoing a border collision bifurcation as described in Section 4 . In this

situation, s may possess periodic orbits visiting both S n and S n +1 . Unfortunately, there is little general theory that can be

applied to prove the existence of such periodic orbits. In this section, we review possibly the only result (to our knowledge)

in this direction by Gambaudo et al. We first introduce symbolic dynamics and some definitions in order to characterize

these periodic orbits. 

Definition 1. Given z ∈ S n ∪ S n +1 , we define the itinerary of z by s as 

I s (z) = 

(
a (z) , a ( s (z) ) , a 

(
s 2 (z) 

)
, . . . 

)
, 

where 

a (z) = 

{
1 if z ∈ S n +1 

0 if z ∈ S n . 

Remark 7. Although we consider only periodic orbits that interact with two regions ( S n and S n +1 ), it is possible to extend

the results and definitions to orbits interacting with more than two regions. However, this situation is out of scope of our

paper. 

Definition 2. One calls W p, q the set of periodic symbolic sequences generated by infinite concatenation of a symbolic block

of length q containing p symbols 1: 

W p,q = 

{
y ∈ { 0 , 1 } N | y = x 

∞ , x ∈ { 0 , 1 } q and x contains p symbols 1 

}
. 

Definition 3. One says that a sequence in W p, q has rotation number p / q . 

Remark 8. In the one-dimensional case, this definition of the rotation number coincides with the classical one for one-

dimensional circle maps through a lift (see [19] ). However, in the planar case, it becomes in general difficult (if possible)

to define this number by means of lifts, as the dynamics cannot always be reduced to a 2-dimensional torus. However,

following [24,29] , we abuse notation and call this number the “rotation number”. 

Definition 4. Symbolic sequences can be ordered using that 0 < 1. Hence, 

(x 1 x 2 . . . ) < (y 1 y 2 . . . ) 

if and only if x 1 = 0 and y 1 = 1 or x 1 = y 1 and there exists some j > 1 such that 

x i = y i , for all i < j 

x j = 0 

y j = 1 . 

This order allows one to consider the following definition: 
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Definition 5. Let σ be the shift operator. One says that a symbolic sequence x ∈ W p, q is maximin if 

min 

0 ≤k ≤q 

(
σ k (x ) 

)
= max 

y ∈ W p,q 

(
min 

0 ≤k ≤q 

(
σ k (y ) 

))
. 

Example 1. Up to cyclic permutations, there exist only two periodic sequences in W 2, 5 , which are represented by means

of two blocks that, when expressed in minimal form, are given by 0 3 1 2 and 0 2 101. The maximum of the minimal blocks is

0 2 101, therefore the symbolic sequence generated by 0 2 101 is maximin. 

Intuitively, maximin symbolic sequences have “well” distributed symbols 1 along the sequence, which is related to the

notion of “well ordered” symbolic sequences (see Definition 6 ). 

Alternatively, maximin itineraries can be defined as those belonging to the Farey tree of symbolic sequences. This means

that they are given by concatenation of two maximin sequences such that their rotation numbers are Farey neighbours.

See [19] for a recent review in this topic. 

Then, we may apply the following result to study the existence of maximin periodic orbits: 

Theorem 1 (Dynamics of quasi-contractions) . Assume that there exist sets E 0 ⊂ S n and E 1 ⊂ S n +1 such that 

(i) s (E i ) ⊂ E 0 ∪ E 1 , for i = 0 , 1 . 

(ii) s 0 and s 1 contract in E 0 and E 1 , respectively. 

(iii) s i (�NS ) ∩ �NS = ∅ for all i ≥ 1 . 

Then, provided that s preserves orientation, s possesses 0 or 1 periodic orbit. In the latter case, its itinerary is maximin. 

The previous result was stated in [29] for quasi-contractions in metric spaces and adapted in [19] for piecewise continu-

ous contracting maps in R 

n . 

Remark 9. The previous theorem establishes the existence of 0 or 1 periodic orbits when the map preserves orientation.

For the one-dimensional case, an orientation-preserving quasi-contraction can be seen as a contracting circle map, which

possesses 0 periodic orbits when its rotation number is irrational. In this case, its ω-limit consists of a Cantor set or the

whole circle, and this occurs only for a set of parameter values of zero measure (see [19] for the details). However, for the

higher-dimensional case, this is still an open problem to understand how large is the set of parameter values leading to 0

periodic orbits and how is the dynamics when this occurs. Therefore, for our purposes, this theorem will be useful only to

show that, if a periodic orbits exists, it has to have a maximin itinerary. 

In Section 6.3 we will show how Theorem 1 can be applied to a particular example to prove that, if a periodic orbit

exists, its itinerary must be maximin by checking the hypothesis using semi-rigorous numerics. 

6. Application to a neuron model 

In this section, we apply the theoretical results presented in previous sections to a spiking neuron model of integrate-

and-fire type with a dynamic threshold. 

6.1. The model 

We consider the system proposed in [6] , which consists of a leaky integrate-and-fire model with a dynamic threshold.

It is a dimensionless version of other similar models such as [4,5] . The system is submitted to periodic forcing I ( t ) as in

Eq. (2) . The equations are given by: 

˙ V = −V + V 0 + I(t) 

τθ
˙ θ = −θ + θ∞ 

(V ) 
(22)

where (V, θ ) ∈ R 

2 are the neuron voltage and the threshold, respectively. The function 

θ∞ 

(V ) = a + e b ( V −c ) (23)

is the steady state value of the threshold θ , with a, b, c ∈ R ; τ θ is the time constant for the threshold (which will be chosen

only a bit slower than the membrane time constant, i.e. τ θ > 1) and V 0 is the voltage at the resting state. The spiking reset

rule is given by: 

if V (t ∗) = θ (t ∗) then V (t + ∗ ) = V r and θ (t + ∗ ) = θ (t ∗) + �, (24)

with V r and � being real parameters. Following [6] , the parameters of the system along this paper are V 0 = 0 . 1 , V r = 0 ,

� = 0 . 3 , a = 0 . 08 , c = 0 . 53 and τθ = 2 . Parameter b will vary along this study between 0 and 1. The rest of parameters, d, T

and A , describe the input. In this work, parameter d will be fixed to d = 0 . 5 , and T and A will take different values leading

to different dynamics as discussed in Sections 6.2 –6.4 . 
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Notice that system (22) –(24) is of the form (1) –(3) , with a threshold manifold 

T = 

{
(V, θ ) ∈ R 

2 | h (V, θ ) = V − θ = 0 

}
, 

reset map 

R : T −→ R 

(V, θ ) � −→ (V r , θ + �) , 

reset manifold 

R = 

{
(V, θ ) ∈ R 

2 | V = V r 

}
, 

and subhtreshold domain 

D = { (V, θ ) , | V ≥ V r , V < θ} . 
Notice that for biological reasons we restrict the subthreshold domain to V ≥ V r . Hence, the subthreshold domain is the

region in the first quadrant between the vertical line V = V r and the diagonal V = θ, as shown in Fig. 1 for V r = 0 . 

Next we show that system (22) satisfies hypothesis H.1 and H.2. Indeed, for A = 0 , the system has a subthreshold equi-

librium point at (V ∗, θ ∗) = (V 0 , θ∞ 

(V 0 )) ∈ D (it satisfies V 0 < θ∞ 

( V 0 ) for the choice of parameters) with eigenvalues λ1 = −1

and λ2 = −1 /τθ . Thus, it is an attracting node. The associated eigenvectors are v 1 = (1 , θ ′ ∞ 

(V ∗) / (1 − τθ )) and v 2 = (0 , 1) ,

respectively. Then, assuming that τ θ > 1, trajectories approach the equilibrium point tangentially to the V -nullcline ( V = V 0 ).

This guarantees the existence of trajectories staying in D as along as desired without intersecting the diagonal, T . 
In order to prove hypothesis H.2 we will show that the vector field on the threshold manifold T points towards D . There-

fore, we need to impose that the vector (−V + V 0 , −V + θ∞ 

(V )) satisfies −V + θ∞ 

(V ) > −V + V 0 , which implies θ∞ 

( V ) > V 0 .

Thus, choosing parameters a, b, c such that θ∞ 

( V ) > V 0 for all values of V (i.e. θ∞ 

(V ) > a + e −b(V r −c) > V 0 ), we have that all

points in D belong to orbits that do not intersect T for A = 0 . 

Remark 10. If one choses a function θ∞ 

( V ) for which hypothesis H.2 is not satisfied, the mathematical analysis presented

in Sections 2 –4 still follows if z ∗ = (V ∗, θ ∗) is enough isolated from those points not satisfying hypothesis H.2 . In this case,

one can safely remove these points from D and the analysis in the mentioned sections holds nevertheless. 

6.2. Fixed points and their bifurcations 

In this section we analyze the bifurcations of the fixed points of the stroboscopic map (corresponding to T -periodic

orbits of the time-continuous system (22) –(24) ) when varying parameters of the system. We focus on bifurcations exhibited

by the fixed points z̄ 0 ∈ S 0 and z̄ 1 ∈ S 1 , as they are more relevant from an applied point of view, given that they combine

spiking and subthreshold dynamics. A similar analysis can be done for fixed points exhibiting more spikes, z̄ n ∈ S n . We focus

on bifurcations associated to piecewise smooth maps (border collisions), although other bifurcations of smooth maps such

as the Neimark-Sacker bifurcation may occur. As explained in Section 4 , such border collision bifurcations correspond to a

periodic orbit of the time-continuous system grazing the threshold, which can occur through a tangency (smooth grazing

or, equivalently, border collision with �S 
1 

or �S 
2 

) or when disabling the pulse (nonsmooth grazing or, equivalently, border

collision with �NS 
1 

or �NS 
2 

). 

One of the characteristics of system (22) which may influence having smooth or nonsmooth grazing bifurcations is the

position of the equilibrium point for I = A (given by the intersection of the nullclines, which occurs at V ∗ = V 0 + A and

θ ∗ = θ∞ 

(V 0 + A ) ). If this point happens to be far away from the domain D ( V � θ ), then the dynamics is fast, trajectories

spend little time between spikes and transversal grazing is most likely to occur. However, if the equilibrium point is close to

the threshold manifold (or even at D ), then the dynamics is slower and system may exhibit tangencies with T . The nature of

the function θ∞ 

( V ) allows these two situations mainly by varying the parameter b between 0 and 1. For small b (close to 0)

the nullcline θ = θ∞ 

(V ) becomes almost flat in D and fixes the equilibrium point for I = A outside D (see Figs. 3 (a) and (b)).

However, for larger values of b the function θ∞ 

( V ) may be completely located in D (see Figs. 3 (c) and (d)). Moreover, the

latter case has consequences from the neuron modeling point of view as these systems are not capable to show repetitive

firing for constant input and they are referred as phasic neurons [7] . 

Apart from A and b , other relevant parameters influencing these different type of behaviours are T and d , as they control

the integration time during the active part of the pulse. When the pulse is active for a short time, the regions S n , n > 1,

occupy a small portion of the subthreshold domain (see Figs. 3 (b) and (d)). In this work we keep d = 0 . 5 fixed, and study

bifurcations of the fixed points z̄ 0 and z̄ 1 when varying b, A and T . 

We first fix T = 0 . 5 and compute the bifurcation curves of the fixed points z̄ 0 and z̄ 1 in the parameter space ( b, A )

(see Fig. 4 ). These curves have been computed semi-analytically using a predictor-corrector method detailed in Appendix C .

As we are computing periodic orbits close to bifurcations, the method may predict or correct a point outside the feasible

domain. However, as explained in Section 3.2 , the system can be extended to virtual domains and allow the Newton method

to continue and converge. 

In black we show the border collision curve given by the collision of the fixed point z̄ 0 ∈ S 0 with �NS 
1 

(nonsmooth graz-

ing). Recall that at this bifurcation a non-spiking T -periodic orbit grazes the threshold precisely when the pulse is disabled
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Fig. 3. (Left) Trajectories of system (22) –(24) on the ( V, θ ) phase space with initial conditions in sets S 0 (red) and S 1 (green). Blue curves correspond to 

the boundaries �NS 
n , n ≥ 1 and the purple curve to the boundary �S 

1 
. Gray dashed curves correspond to θ- and V -nullclines for I = 0 and I = A ; and their 

intersection corresponds to the point ( V ∗ , θ ∗). Solid black curves correspond to the reset manifold R and the threshold manifold T . (Right) Times courses 

of I ( t ) and the variables V (solid) and θ (dashed) for the trajectories shown on the left with the same color. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Border collision bifurcation curves and regions of existence of z̄ 0 and z̄ 1 in the ( b, A ) parameter space for T = 0 . 5 (vertical axis is in logarithmic 

scale). Curve in black corrsponds to a border collision of z̄ 0 ∈ S 0 with �NS 
1 

. Curve in dark red corresponds to a border collision of z̄ 1 ∈ S 1 with �NS 
1 

(outer 

curve) and �NS 
2 

(inner curve). Curve in light red corresponds to a border collision of z̄ 1 ∈ S 1 with �S 
1 

. Dots on these curves indicate the parameter values 

( A, b ) for which we show (in the Figure indicated nearby) the trajectory of the periodic orbit of the time continuous system that undergoes a grazing 

bifurcation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(see Figs. 5 (a) and 5 (b)). Hence, as detailed in Appendix C , this curve has been computed numerically solving Eqs. (18) –(20)

for n = 1 which, in this particular case, become 

ϕ A (−dT ; (V, V )) = ϕ 0 (T − dT ;V, V ) , (25)

where V, b and A are the unknowns. Crossing this curve with increasing A , the fixed point z̄ 0 first disappears and reappears

again, as the curve exhibits a fold. For the given value of T , z̄ 0 does not exhibit any border collision involving �S 
1 

. 

In red we show two border collision curves. The outer one corresponds to the collision of the fixed point z̄ 1 ∈ S 1 with

�NS 
1 

(nonsmooth grazing), which corresponds to a spiking T -periodic orbit grazing the threshold precisely when the pulse is

disabled (see Figs. 5 (c) and 5 (d)). This curve has been computed numerically solving Eqs. (19 )–( 21) for n = 1 which, in this

particular case, become 

ϕ A (−dT ; (V, V )) = ϕ 0 (T − dT ;V r , V + �) , (26)

where V, b and A are the unknowns. 

The outer red bifurcation curve stops at a point labeled as C 2 1 . At this point, the grazing bifurcation occurring at t = dT 

becomes smooth (see Figs. 6 (a) and 6 (b)). This point is hence a co-dimension-two bifurcation point as both smooth and

nonsmooth grazing bifurcation conditions ( Eqs. (15 )–( 17) and (19) –(21) for n = 1 ) are simultaneously satisfied. From this

point on, the fixed point z̄ 1 collides with �S 
1 
, which corresponds to the light red bifurcation curve in Fig. 4 . Recall that at

this bifurcation a spiking T -periodic orbit tangentially grazes the threshold T (see Figs. 6 (c) and 6 (d)). This curve has been

computed numerically solving Eqs. (15 )–( 17) for n = 1 which, in this particular case, become 

ϕ A (−t 1 ; (V, V )) = ϕ 0 (T − dT ;ϕ A (dT − t 1 ;V r ,V + �) (27) 

−V + V 0 + A = 

−V + θ∞ 

(V ) 

τθ
, (28) 

where V, t 1 , b and A are the unknowns. 

The inner red curve corresponds to the collision of the fixed point z̄ 1 with �NS 
2 

, which corresponds to a spiking T -periodic

orbit which attempts to exhibit a new spike by grazing the threshold precisely when the pulse is disabled (see Figs. 5 (e)

and 5 (f)). As detailed in Appendix C , this curve has been computed numerically solving Eqs. (18) –(20) for n = 2 which, in

this particular case, become 

ϕ A (−t 1 ; (V 1 , V 1 )) = ϕ 0 (T − dT ;V 2 ,V 2 ) 

(V 2 , V 2 ) 
T = ϕ A (dT − t 1 ;V r ,V 1 + �) , 

(29) 

where V 1 , V 2 , t 1 , b and A are the unknowns. 

For the given value of T , z̄ 1 does not exhibit any border collision involving �S 
2 

. 

In the region limited by the inner and outer red curves defining the bifurcations z̄ 1 ∈ �2 and z̄ 1 ∈ �1 , respectively, the

fixed point z̄ 1 ∈ S 1 exists. Note also that the curves defined by z̄ 0 ∈ �NS 
1 

and z̄ 1 ∈ �NS 
1 

(black and outer dark red curves) cross

transversally. This implies the existence of a region where both fixed points z̄ 0 and z̄ 1 coexist and are stable, as well as the

existence of a region where, none of the fixed points z̄ 0 and z̄ 1 exist. Instead, one finds higher periodic orbits organized by

period adding-like structures, which will be treated in more detail in Section 6.3 . 

In Fig. 7 we show the results of a similar analysis for T = 5 . We observe the same nonsmooth grazing bifurcations as for

T = 0 . 5 but this case shows more smooth grazing bifurcations. Thus, we do not repeat the details for the nonsmooth grazing

bifurcations that have already been discussed and we focus on the new ones. 
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Fig. 5. Trajectories of T -periodic orbits undergoing the grazing bifurcations labeled in Fig. 4 . (a,b) Nonsmooth grazing bifurcation of a non-spiking periodic 

orbit (border collision of z̄ 0 ∈ S 0 with �NS 
1 

). (c,d) Nonsmooth grazing bifurcation of a 1-spiking periodic orbit (border collision of z̄ 1 ∈ S 1 with �NS 
1 

). (e,f) 

Nonsmooth grazing bifurcation of a 1-spiking periodic orbit (border collision of z̄ 1 ∈ S 1 with �NS 
2 

). Left panels show trajectories on the ( V, θ )-phase space 

while right panels show the corresponding time courses of the variables V (solid line) and θ (dashed line) over 1 period. 

 

 

 

 

 

 

We observe that for T = 5 the fixed point z̄ 0 ∈ S 0 undergoes border collision bifurcations through smooth grazing,

z̄ 0 ∈ �S 
1 

. That is, a non-spiking T -periodic orbit tangencially grazes the threshold T (see Figs. 8 (a) and 8 (b)). The corre-

sponding bifurcation curve is shown in gray in Fig. 7 , and it has been computed solving Eqs. (14) –(16) for n = 1 which, in

this particular case, become 

ϕ A (−t 1 ; (V, V )) = ϕ 0 (T − dT ;ϕ A (dT − t 1 ; (V, V ))) 

−V + V 0 + A = 

−θ + θ∞ 

(V ) 

τθ
, 

where V, t 1 , b and A are the unknowns. 

We also observe that the fixed point z̄ 1 ∈ S 1 undergoes border collision bifurcations when colliding with �S 
2 

. We recall

that, at this bifurcation a T -periodic orbit exhibing one spike reaches the threshold a second time by tangential grazing (see

Fig. 8 (c) and 8 (d)). This bifurcation curve, shown in light red in Fig. 7 , has been computed solving Eqs. (14) –(16) for n = 2
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Fig. 6. Trajectories of T -periodic orbits undergoing the grazing bifurcations labeled in Fig. 4 . (a,b) Co-dimension two bifurcation labeled as C 2 1 in Fig. 4 ; a 

periodic orbit undergoes a smooth bifurcation at t = dT ( ̄z 1 ∈ S 1 collides with �NS 
1 

and �S 
1 

simultaneously). (c,d) Smooth grazing bifurcation of a 1-spiking 

periodic orbit (border collision of z̄ 1 ∈ S 1 with �S 
1 

.) Left panels show trajectories on the ( V, θ )-phase space while right panels show the corresponding time 

courses of the variables V (solid line) and θ (dashed line) over 1 period. 

Fig. 7. Border collision bifurcation curves and regions of existence of the fixed points z̄ 0 and z̄ 1 in the ( b, A ) parameter space for T = 5 (vertical axis in 

logarithmic scale). Curves in black and gray correspond to border collision bifurcations of z̄ 0 ∈ S 0 with �NS 
1 

and �S 
1 
, respectively. Curves in red and light red 

correspond to border collision bifurcations of z̄ 1 ∈ S 1 with �NS and �S , respectively. Co-dimension-two bifurcation points are labeled as C 2 i , i = 2 , 3 , 4 and 

are explained in the text. Dots on these curves indicate the parameter values ( A, b ) for which we show (in the Figure indicated nearby) the trajectory of 

the periodic orbit of the time continuous system that undergoes a grazing bifurcation. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

which, in this particular case, become 

ϕ A (−t 1 ;V 1 , V 1 ) = ϕ 0 (T − dT ;ϕ A (dT − t 2 − t 1 ;V 2 , V 2 )) 

(V 2 , V 2 ) 
T = ϕ A (t 2 ;V r ,V 1 + �) 

−V 2 + V 0 + A = 

−V 2 + θ∞ 

(V 2 ) 

τθ
, 

(30) 

where V 1 , V 2 , t 1 , t 2 , b and A are the unknowns. 

For T = 5 we observe 3 new co-dimension-two bifurcation points apart from the one reported in the case T = 0 . 5 , C 2 1 .

As for C 2 , two of these new points are given by the transition from nonsmooth to smooth grazing bifurcations. The curve
1 
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Fig. 8. Trajectories of T -periodic orbits undergoing the smooth grazing bifurcations labeled in Fig. 7 . (a,b) Smooth grazing bifurcation of a non-spiking 

periodic orbit (border collision of z̄ 0 ∈ S 0 with �S 
1 

). (c,d) Smooth grazing bifurcation of 1-spiking periodic orbit (border collision of z̄ 1 ∈ S 1 with �S 
2 

). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

defined by z̄ 0 ∈ �1 transitions from z̄ 0 ∈ �NS 
1 

(black curve) to z̄ 0 ∈ �S 
1 

(gray curve) at the point labeled as C 2 2 (see zoomed

box in Fig. 7 ). At this point, both Eqs. (14) –(16) and (18) –(20) are simultaneously satisfied for n = 1 and hence this is a co-

dimension-two bifurcation point. At these parameter values a non-spiking T -periodic orbit tangentially grazes the threshold

at t = dT (see Figs. 9 (a) and 9 (b)). Something similar occurs with the fixed point z̄ 1 ∈ S 1 : a grazing bifurcation transitions

from nonsmooth (dark red) to smooth type (light red) at the point C 2 3 ( ̄z 1 ∈ �NS 
2 

∩ �S 
2 

). At this point, both Eqs. (14) –(16) and

(18) –(20) are simultaneously satisfied for n = 2 and hence this is a co-dimension-two bifurcation point. At these parameter

values a T -periodic orbit exhibiting one spike grazes a second time the threshold at t = dT , and does it tangencially (see

Figs. 9 (c) and 9 (d)). 

The third co-dimension-two bifurcation point, C 2 4 , is of different type. Indeed, it is given by the intersection of the

bifurcation curves defined by z̄ 1 ∈ �S 
1 

and z̄ 1 ∈ �S 
2 

. At these parameter values a T -periodic orbit tangentially grazes the

threshold twice (see Figs. 9 (e) and 9 (f)). 

As in the previous case, the curves defined by z̄ 0 ∈ �NS 
1 

and z̄ 1 ∈ �NS 
1 

cross transversally defining four regions in the

parameter space regarding their existence. In two of them only one fixed point exists (either z̄ 0 or z̄ 1 ), in another one both

coexist and in the fourth one none of them exist. In the latter region one finds higher periodic orbits (see Section 6.3 ). In

the case where both fixed points coexist one finds bi-stability, as both are attracting. 

6.3. Periodic orbits of the stroboscopic map and bifurcations 

In the previous section we have found the curves on the parameter space ( b, A ) where the fixed points z̄ 0 and z̄ 1 of the

stroboscopic map s undergo border collision bifurcations. As z̄ 0 and z̄ 1 collide with �1 and disappear there might appear

periodic orbits of the map visiting both S 0 and S 1 . In order to explore the existence of such periodic orbits, we consider a

set of initial conditions on the subthreshold regime (regions S 0 and S 1 ) and integrate them for several periods to identify

the attracting periodic orbits of the system stepping on S 0 and S 1 . See Appendix D for the numerical details. Of course, the

same exploration can be done for orbits stepping on S n , n ≥ 2, but for the purposes of this paper we focus only on S 0 and

S 1 . 

For T = 0 . 5 we computed the number of attracting periodic orbits of the stroboscopic map (see Fig. 10 (a)) and their

periods (see Fig. 10 (b)). Notice that several periodic orbits coexist for many parameter values. Hence, whenever there are

several periodic orbits the colour in Fig. 10 (b) has been modified in order to reproduce the effect of the intersection. As with

the fixed point z̄ , periodic orbits (z , . . . , z n ) ∈ (S ∪ S ) n of the stroboscopic map appear and disappear due to collisions
1 1 0 1 
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Fig. 9. Trajectories of the T -periodic orbits at the co-dimension two bifurcation points labeled in Fig. 7 . (a,b) Point C 2 2 : a non-spiking periodic orbit 

tangentially grazes the threshold at t = dT ( ̄z 0 ∈ �NS 
1 

∩ �S 
1 

). (c,d) Point C 2 3 : a 1-spiking periodic orbit tangencially grazes the threshold precisely at t = dT, 

when the pulse is disabled ( ̄z 1 ∈ �NS 
2 

∩ �S 
2 

). (e,f) Point C 2 4 : a 1-spiking periodic orbit grazes the threshold twice, both tangentially ( ̄z 1 ∈ �S 
1 

∩ �S 
2 

). 

Fig. 10. (a) Number and (b) period of the periodic orbits of the stroboscopic map for T = 0 . 5 stepping on S 0 and S 1 found by means of the numerical 

algorithm described in Appendix D . We include also the bifurcation curves computed in Fig. 4 . All periodic orbits are maximin. The areas where there is 

coexistence of two or more periodic orbits are colored according to an averaged period in order to reflect superposition of colors. Regions with orbits of 

period equal or higher than 10 have the same color. Notice that the region where periodic orbits exist shows a jagged edge due to numerical issues related 

to grazing of the orbits. 
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of a point of the orbit z i with the border �1 and �2 , bounding the region of existence of a given periodic orbit. Take

for instance the orbit of period 2 ( z 1 , z 2 ) ∈ ( S 0 ∪ S 1 ) 
2 (corresponding to the orbit with symbolic sequence 01, i.e z 1 ∈ S 0 and

z 2 ∈ S 1 , see Definition 1 ), which can be found in the region colored in gray (plus intersections) in Fig. 10 (b). Notice that the

shape of this region resembles that of the region of existence of z̄ 1 in Fig. 4 (recall that this region is bounded by the red

curves). Clearly, the existence regions for different periodic orbits overlap as b increases giving rise to regions with multiple

coexistence of periodic orbits. 

For small values of b (close to 0), we observe that periodic orbits exist only in the region where the stroboscopic does

not have fixed points and, moreover, these periodic orbits are unique. Thus, for a fixed small b , as the amplitude increases

the fixed point z̄ 0 disappears through a border collision bifurcation with �NS 
1 

(black curve) and a unique periodic orbit

appears, undergoing most likely a period-adding bifurcation (see also Fig. 11 (a)) until the fixed point z̄ 1 appears through

a border collision bifurcation with �NS 
1 

(see Section 6.2 ). The periodic orbits in this region are organized by bifurcation

structures that resemble the period-adding bifurcation structure of 1-dimensional circle or discontinuous maps (see [19] ).

More precisely, their “rotation number” (see Definition 3 and Remark 8 ) resembles the devil’s staircase, symbolic sequences

of periodic orbits are glued through gluing bifurcations and their periods are added. See Fig. 11 (a) and Fig. 11 (c), where we

show the periods and the “rotation number”, respectively, of the periodic orbits along the 1-dimensional scan for b = 0 . 1

(labeled in Fig. 10 (a)). 

Remark 11. We emphasize that we refer to period-adding-like or cascade of gluing bifurcations when we cannot assess that

we have the infinite number of bifurcation curves that separate the regions of existence of periodic orbits or, equivalently, a

continuous curve of “rotation numbers”, showing a devil’s staircase through the complete Farey tree. 

For intermediate and large values of b (approximately 0.5 and above) there exist multiple periodic orbits of the strobo-

scopic map that coexist with fixed points. Indeed, the regions of existence of periodic orbits expand towards the regions

where z̄ 0 or z̄ 1 also exist, while at the same time start to intersect between them, showing multistability. Moreover, many

branches of “rotation numbers” are lost, leaving the Farey tree incomplete. See for example a one-dimensional scan for

b = 0 . 55 in Fig. 12 (b), where many periodic orbits are no longer found and one finds co-existence instead. Consequently, the

“rotation number” (shown in Fig. 11 (d)) is discontinuous, leading to the coexistence of periodic orbits and overlapping of

rotation numbers. 

For T = 5 we observe that for all values of b between 0 and 1, periodic orbits only exist in the region confined between

two nonsmooth border collision bifurcations, corresponding to the disappearance of the fixed point z̄ 0 ( ̄z 0 impacts �NS 
1 

)

and the appearance of the fixed point z̄ 1 ( ̄z 1 impacts �NS 
1 

). See Fig. 12 (a). In this case periodic orbits are all unique: we do

not observe coexistence of several periodic orbits or coexistence of periodic orbits with fixed points. For a fixed value of

b , as the amplitude A increases these periodic orbits undergo several gluing bifurcations (see also Fig. 12 (b)). However, in

this case our numerical computations suggest that the Farey tree is incomplete and the curve or “rotation numbers” shows

discontinuities without the overlapping observed in the previous case. 

Notice that, as opposed to the case T = 0 . 5 , periodic orbits are confined in a very small region of the bifurcation diagram.

Alongside, for the case T = 0 . 5 most of the border collision bifurcations correspond to collisions with �NS 
1 

and �NS 
2 

, i.e.,

nonsmooth grazing bifurcations. In this case, it is expected that close to a border collision the dynamics of the map will

map points of S 0 to S 1 and viceversa, and therefore there might appear periodic orbits whose iterates step on both regions

S 0 and S 1 . However, for T = 5 , for intermediate and large values of b border collision bifurcations correspond to collisions

with �S 
1 

and �S 
2 
, and in this case we do not find periodic orbits stepping only on S 0 and S 1 . Instead, it seems that fixed

points z̄ 0 and z̄ 1 coexist, thus possibly preventing the existence of periodic orbits. The further exploration of the dynamics

close to border collision bifurcations with �S 
1 

and �S 
2 

lies ahead (see Section 7 for a discussion). 

6.4. Maximin itineraries 

In this section we explore the maximin properties of the computed periodic orbits for the stroboscopic map (see equiva-

lent Definitions 5 and 6 ). Using a simple algorithm (see Appendix D for details), we find that all the itineraries are maximin.

In Fig. 13 we show the time series of the periodic orbits obtained for the parameter values labeled in Fig. 11 (a) for T = 0 . 5 .

Their symbolic itineraries are 01 5 , 0101 2 , 001(01) 3 and 0 7 1, which are all maximin. Recalling Definition 1 , symbol 0 is used

when no spike is produced ( z i ∈ S 0 ), while 1 means that one spike is produced ( z i ∈ S 1 ). To study the existence of maximin

itineraries more rigorously we wonder if the conditions of Theorem 1 are satisfied. Notice though that conditions i)–iii)

are difficult to check explicitly and therefore we designed an algorithm to check them numerically. Next, we describe the

numerical algorithm and discuss the domain of application of the theoretical result. 

For a given value of A , we first numerically find sets E i that satisfy hypothesis i) of Theorem 1 . We construct these sets

to be as small as possible and later we check whether they satisfy conditions ii) and iii) . For convenience, we choose these

sets to be quadrilaterals whose union is a convex polygon. More complex geometries are of course possible, although they

would significantly complicate the algorithm without guarantee of better results. 

To construct the sets E 0 and E 1 , we first take a small segment γ ⊂�1 “close” to the periodic orbit found by direct

simulation. This segment is iterated by s 0 and s 1 . We then consider the two quadrilaterals formed by the segments γ and

s 0 (γ ) , and γ and s 1 (γ ) (see Fig. 14 ). We then grow the segment γ until the union of these two quadrilaterals is a convex

polygon. If this cannot be done, then we stop the algorithm and assume we could not find the desired sets E and E . If
0 1 
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Fig. 11. Periods (top) and “rotation numbers” (bottom) of the periodic orbits found by varying the amplitude A along the vertical lines b = 0 . 1 (left) and 

b = 0 . 55 (right) as indicated in Fig. 4 . Periodic orbits have been computed numerically using the algorithm described in Appendix D . For b = 0 . 1 , we 

repeated the computations with a smaller stepsize along the A -axis and we have found higher periods interleaved according to the Farey tree structure 

(results not shown), suggesting that the “rotation number” shown in (c) might be continuous along the Farey tree. 

Fig. 12. (a) Periods of unique maximin periodic orbits of the stroboscopic map for T = 5 stepping on S 0 and S 1 . We include also the bifurcation curves 

computed in Fig. 7 . (b) Periods of the periodic orbits found by varying the amplitude A along the vertical line b = 0 . 1 as indicated in panel (a). 

 

 

 

 

 

 

 

 

 

 

 

we succeed, we check whether the images of the two quadrilateral candidates are contained in their union (the convex

polygon). The fact that their union is a convex polygon makes it easier to check this inclusion (see Remark 13 ). If any of the

images is not contained in this union, then we further grow the initial segment γ in the direction that failed and we check

again. If at some point we succeed, then we have found sets E i satisfying hypothesis i) of Theorem 1 . For the four values of

A indicated in Fig. 11 (a) we have been able to find sets E 0 and E 1 as described (see Fig. 14 ). 

We then check the contracting condition ii) . As discussed in Section 3.2 , , in general, the maps s i are contracting if d

is small enough. In this particular example, provided that system (22) always possesses an attracting equilibrium point

for A ≥ 0 (although it may be virtual), the map s 0 is contracting for any 0 ≤ d ≤ 1. This is because, in this case, s 0 be-

comes the composition of two stroboscopic maps of contracting flows. However, s 1 does not necessary contract, even if

system (22) possesses for both I = A and I = 0 attracting equilibrium points, due to the collision with the threshold and the

reset condition. This is because, when spikes are introduced, the differential D s 1 is not only given by integration of varia-

tional equations, but it includes terms given by the reset map 

˜ R and differentiation of t ∗ with respect to initial conditions
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Fig. 13. Time course of the variables V (solid) and θ (dashed) corresponding to the four nT -periodic orbits labeled in Fig. 11 (a) (with n = 6 , 5, 9 and 8 for 

panels (a–d), respectively). Notice that we show two periods of the nT -periodic orbits. We indicate their symbolic itinerary at the bottom of the time axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(see Appendix B for more details). We check its contractiveness by numerically computing the differential D s 1 (as described

in Appendix B ) and its eigenvalues in a mesh of points in E 1 . If, for all the points in the mesh, both eigenvalues have mod-

ulus less than 1 we then assume that condition ii) is also satisfied. If this condition is not fulfilled, we then say that we

have not been able to check the conditions of Theorem 1 . This is the case in panels (c) and (d) of Fig. 14 , for which we have

found points for which the matrix D s 1 has eigenvalues outside the unit circle. 

Finally, it remains to check whether condition iii) holds. This is done by checking whether all points in the segment

γ ⊂�1 visit S 0 and S 1 altogether or they split after intersecting �1 ( s 
n (γ ) ∩ �1 for some n > 0). In other words, we numeri-

cally check whether all points in γ , are attracted towards the same fixed point of s p , where p is the period of the periodic

orbit found by iteration. In Fig. 14 we show examples of values of A for which condition iii) is satisfied (panels (a), (b) and

(d)) and not satisfied (panel (c)). Thus, we conclude that for parameter values ( A, b ) corresponding to cases (a) and (b) we

have checked semi-rigorously that the conditions of Theorem 1 are satisfied. Therefore, we get that a periodic orbit exists,

its itinerary has to be maximin. We want to acknowledge that this numerical validation does not follow a computer assisted

proof procedure. 

We have applied the numerical algorithm described above to all values of A in Fig. 11 (a). In Fig. 15 we show the values

of A for which we have been able to validate conditions i)–iii) of Theorem 1 . 

Notice that hypothesis of Theorem 1 are difficult to check and very restrictive. Indeed, maximin periodic orbits exist far

beyond the regions where the hypothesis can be checked using the numerical algorithm described above. Future work will

be devoted to study the viability of the application of the techniques developed in [30] to cases with multistability. 

Remark 12. This algorithm has more chances to suceed if the segment γ ⊂ �NS 
1 

, which is the case in this example, as the

computed periodic orbits are located between the curves defining z̄ 0 ∈ �NS 
1 

and z̄ 1 ∈ �NS 
1 

. 

Remark 13. This algorithm takes advantage of the fact that the sets E i are quadrilaterals and that E 0 ∪ E 1 is a convex polygon

in order to easily check the inclusions s 0 (E 0 ) ⊂ E 0 ∪ E 1 and s 1 (E 1 ) ⊂ E 0 ∪ E 1 . In order to check if a point lies in the interior

of this polygon we order its vertices clockwise and check whether the vectors pointing from the point to these vertices

twist clockwise. We do this for the iterates of a mesh of 50 points along the bondary of the polygon. If all images lie in the

interior of E 0 ∪ E 1 , we then say the condition ii) is satisfied. 

7. Conclusions and discussion 

In this paper, we have studied the dynamics of hybrid systems submitted to a periodic forcing consisting of a square-

wave pulse. In particular, we have studied a model consisting of a leaky integrate-and-fire model with a dynamic threshold,
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Fig. 14. Sets E i satisfying condition i) of Theorem 1 for the parameter values labeled in Fig. 11 (a). The found periodic orbits have symbolic itineraries: (a) 01 5 , 

(b) 0101 2 , (c) 0 2 1(01) 3 and (d) 0 7 1 . The corresponding evolution of V and θ with respect to time is shown in Fig. 13 . White points are the periodic orbit found 

by direct simulation. Red point is a virtual fixed point found by exteding the maps s i in their virtual domains, as explained in Section 3.2 . Black background is 

S 0 , blue background is S 1 . Blue and green sets are E 0 and E 1 , respectively. Pink and light blue are s 1 (E 1 ) and s 0 (E 0 ) , respectively. The white lines are the images 

s 0 (�1 ) and s 1 (�1 ) . Colored lines are the images of γ (see text) by s i . Those segments that stay connected for all iterates of s are plotted with the same color. 

For Figure (c), not all iterates of the �1 stay connected and, hence, does not satisfy condition iii) . For (c) and (d) we have found points in E 1 whose differential 

D s 1 has eigenvalues outside the unit circle, and hence condition ii) is not satisfied. (a) and (b) satisfy conditions i)–iii) of Theorem 1 . (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 15. Periods of the periodic orbits in Fig. 11 (a) satisfying conditions of Theorem 1 . 

 

 

 

 

 

 

 

 

 

 

combined with a reset rule that is applied whenever the trajectory crosses the threshold manifold. In our analysis, we have

considered the stroboscopic map, which is a piecewise-smooth discontinuous two-dimensional map, for which we can apply

existing theoretical results by Gambaudo et al. [24,29] for “quasi-contractions” (see Theorem 1 ). Thus, we have been able

to “prove”, in combination with numerics, the existence of periodic orbits of maximin type for the stroboscopic map for

certain parameter values. Moreover, we have explored numerically nonsmooth bifurcations (border collisions of fixed points

and gluing bifurcations of T -periodic orbits), that provide a wider description of the dynamics. 

Using particular geometries for the sets E i (quadrilaterals with E 0 ∪ E 1 being a convex polygon), we have shown that the

existing theory has very restrictive hypothesis, since we have numerically observed the existence of maximin unique periodic

orbits even for cases that do not satisfy the hypothesis of Theorem 1 . Moreover, these hypothesis are difficult to check

analytically. Indeed, we have designed a semi-rigorous numerical procedure to check them. It is possible that using more

complex geometries and topologies for the sets E one could obtain better results in checking these hypothesis, although this
i 



A. Granados, G. Huguet / Commun Nonlinear Sci Numer Simulat 70 (2019) 48–73 67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

may signifficantly complicate the numerical algorithms. Thus, the existing theoretical results for two-dimensional piecewise

continuous maps are still very limited to provide a complete description of the dynamics. 

In our analysis we have considered only two partitions for the domain of the stroboscopic map, namely S 0 and S 1 . We

leave for future work the exploration of the invariant objects in other regions of the domain of the stroboscopic map, that

is S n for n ≥ 2, as well as the exploration of other invariant objects beyond periodic orbits. 

In our numerical analysis of nonsmooth bifurcations, we have varied the parameter b in Eq. (23) which sets the system in

two different dynamical regimes. Thus, for small values of b (close to 0), in response to a constant input of sufficiently large

amplitude, the system shows repetitive spiking ( tonic regime ). However, as b increases, a constant input cannot generate

repetitive firing, only a few spikes before returning to resting potential ( phasic regime ) [6,7,31] . We have forced the system

with a square-wave periodic pulse and explored fixed points and periodic solutions of the stroboscopic map in these two

regimes as the amplitude A increases. 

In the tonic regime, we have observed a unique globally attractive maximin periodic orbit with a period that, as the

amplitude is increased, undergoes several gluing bifurcations mimicking the so-called period adding bifurcations for 1-

dimensional maps. Thus, the transition from a T -periodic orbit with no spikes (fixed point z̄ 0 ) and a T -periodic orbit with a

spike (fixed point z̄ 1 ) occurs through a complex mechanism of concatenation of sequences of periodic orbits whose “rota-

tion number” is ordered as in the Farey tree. When we compare the results for two different input frequencies we observe

different behaviours. For high frequency ( T = 0 . 5 ), their “rotation number” evolves, up to our numerical accuracy, as in the

1-dimensional case; that is, it evolves continuously along the Farey tree showing a devil’s staircase. This at least the case for

periodic orbits with periods up to 30. In contrast to the high frequency case, for lower input frequency ( T = 5 ), the “rotation

number” becomes discontinuous. In other words, the Farey tree of “rotation numbers” is not complete. In both cases, the

cascade of gluing bifurcations is confined in the region between two border collision bifurcations (where z̄ 0 and z̄ 1 do not

exist). 

The behavior drastically changes as b increases and the dynamical regime becomes phasic. The dynamics here is more

complex and very different for T = 5 and T = 0 . 5 . Thus, for T = 0 . 5 the organization of periodic orbits in a Farey tree gets

destroyed by the overlap of neighboring periodic orbits (including periodic orbits of period 1 corresponding to z̄ 0 and z̄ 1 ),

leading first to multistability and later to the disappearance of these periodic orbits of period higher than 1. In the case

T = 5 , periodic orbits of period higher than 1 (that step on S 0 and S 1 ) cannot be found beyond the regions where z̄ 0 and

z̄ 1 do not exist. Notice that in this setting, for small values of A the system displays a T -periodic orbit with no spikes (fixed

point z̄ 0 ) and as A increases there appears a T -periodic orbit with a spike (fixed point z̄ 1 ), and both T -periodic orbits coexist.

This behavior agrees with the observation in [6] (for a periodic rectified sinusoidal input), where the transition from firing

patterns consisting of a T -periodic orbit with no spikes to a T -periodic orbit with 1 spike, is more abrupt for low input

frequencies. We leave for future work the exploration of the dynamics for other values of T . 

Notice that b small sets the system in a dynamical regime (tonic) which can be modeled with a 1-dimensional

integrate-and-fire system with a fixed threshold. However, as b increases the dynamical regime becomes phasic, and a one-

dimensional integrate-and-fire model cannot reproduce these dynamics, thus suggesting that the results for larger values of

b show characteristics of 2-dimensional systems. Alongside, conditions for the existence of a period-adding bifurcation (for

which the rotation number is continuous and evolves showing a devil’s staircase along the Farey tree) have been established

theoretically for 1-dimensional piecewise maps [16] . However, it still remains an open question whether it can occur in 2-

dimensional maps and under which conditions. We believe that our results might serve as a motivation and starting point

to prove the conditions that guarantee the existence of period-adding structures in 2-dimensional hybrid systems. Indeed, as

a future work, one might consider reducing the planar piecewise-smooth map to a map onto the cylinder and use rotation

theory for these maps to provide explicit conditions for the existence of period adding bifurcations. 

Regarding the implications for neural studies, our results provide a description of the dynamics and its parameter-

dependence for a class of hybrid neuronal models with more realistic assumptions (variable thresholds). An important ob-

servation is that for certain parameter values, stable phase locked responses with different rotation numbers coexist. This is

a novelty with respect to the classical 1-dimensional leaky integrate-and-fire model, where the rotation number is uniquely

determined [14,16,17] . It remains an open question how the demonstrated properties for single neuron models translate to

the dynamics of a network of neurons. For instance, one may wonder how the observed multistability in the phase-locked

states would affect the network. In this case, a cell that is entrained to a network with a 1:1 phase-locking could be easily

swicthed to another stable phase-locked state with a small peturbation, causing a change in the synchronization pattern.

Hence, our work has possible relevance for the use of hybrid models with dynamic threshold to study impulse-based net-

work desynchronization control techniques (see [32] and references therein), but further work lies ahead. 

We recall that, in the nonsmooth literature, the concept of grazing bifurcation refers to a periodic orbit of a Filippov

system that grazes a switching manifold (where the vector field has a discontinuity). As the vector field is smooth outside

of the switching manifold, this grazing happens to be tangent. In some sense, this classical grazing bifurcation can be related

to our case. After identifying the manifolds T ∼ R such that 

T � z T ∼ z R 

∈ R if z R 

= R (z T ) , 

and adding time as a new variable one gets a Filippov system with three swtching manifolds ( T ∼ R , { t = dT mod T } and

{ t = 0 mod T } ). Then, what we called smooth grazing bifurcation corresponds to grazing the manifold T ∼ R only, while

the nonsmooth grazing bifurcation corresponds to simultaneously grazing the manifold T ∼ R and crossing { t = dT mod T } .
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The first case becomes similar to the classical grazing with the addition of a second discontinuity surface which is not

influencing the bifurcation [33] . In our work, however, we are not only interested in the conditions for which a T -periodic

orbit bifurcates through grazing, but also on how are the dynamics after this bifurcation. We have shown that rich dynamics

involving gluing bifurcations are generated when the grazing and crossing simultaneously occur. 

Also regarding the nonsmooth literature, we emphasize that classical results [26,27,34–43] cannot be applied to our

case mainly due to the periodic forcing, which makes the Poincaré map onto the grazed manifold 2-dimensional. Indeed,

this is precisely the main reason why one finds so rich dynamics in this case. However, regarding multistability close to

the grazing bifurcation, a similar phenomenon is also found for autonomous systems leading to 1-dimensional Poincaré

maps [30,44] although one requires sliding motion along the switching manifold, which cannot be found in our case. We

recall that, in this work we have focused on periodic orbits stepping on S 0 and S 1 only. A further analysis of the bifurcation

structure close to the boundaries �S 
1 

and �S 
2 

may reveal that other type of periodic orbits also stepping on the sets S i , i > 1,

may also appear and may be related with previous results on grazing bifurcations leading to multistability. 

We finally point out that, also due to the periodic forcing, our analysis is different than others in the neuroscience

literature [10–12,45] . Instead of considering the so-called firing or adaptation map (which is indeed the Poincaré map onto

the switching manifold), our analysis is based on the stroboscopic map, which becomes a piecewise-smooth discontinuous

map. The impact map has the advantage that is continuous but, as the system is non-autonomous, one would need to

keep track of the time variable at the threshold manifold, which implies solving transcendental equations. Moreover, unlike

the Poincaré map, the stroboscopic map is defined everywhere and hence captures subthreshold dynamics (dynamics not

interacting with the threshold). Therefore, this latter map is the most suitable one to provide a complete description of the

dynamics for the systems considered in this paper. Of course, the stroboscopic map is limited to periodic inputs. Indeed, if

the stimulation of the neuron is not periodic, for instance, phase-modulated, the impact map would be more appropriate.

For the case of an input consisting of an almost-periodic perturbation the firing rate dynamics was studied using the impact

map in [46] , although it provides limited information about the orbits. 
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Appendix 

This appendix contains the details of the numerical computations performed along the paper. In particular, we describe

the computation of the switching manifolds for the stroboscopic map, its differential, the curves corresponding to border

collision bifurcations of the fixed points of the stroboscopic map and the computation of the periodic orbits of the strobo-

scopic map. 

Appendix A. Computation of the switching manifold 

In this section we explain how to compute the switching manifolds �n , and therefore the areas S n in the subthreshold

domain D . In the case of �NS 
n , we take points on T and integrate them backwards in time for t = dT . If the trajectory hits

the reset manifold R , we apply R −1 (in the example considered, subtract � to the θ-variable and set V = θ ), count one hit

and continue integrating the trajectory backwards for t = dT . If the trajectory hits R again for t < dT , we count another hit

and we apply the same procedure as before. We keep the last point. It will belong to �NS 
n +1 

, where n counts the number

of hits with the manifold R . Of course, the trajectories always lie inside the subthreshold region. On the contrary, if one

of these trajectories lies on the superthreshold region when integrating backwards, we may suspect that �S 
n 
 = ∅ . Then, we

compute the point on the threshold manifold T where the trajectory is tangent. In the example considered, it must satisfy

V = θ and (−1 , 1) · ( f (V, θ ) + (A, 0)) = 0 , or, equivalently, (V − V 0 − A ) τθ − V + θ∞ 

(V ) = 0 . Once we find the point ( V, V )

that solves the equations, we integrate this point backwards in time until t = dT . A point on this trajectory belongs to �S 
n +1 

,

where n corresponds to the number of times the trajectory has hit the reset manifold before reaching the given point when

integrated backwards. 

Appendix B. The differential of the stroboscopic map 

In this section we give details of the computation of the differential of the stroboscopic map s in S 0 and S 1 , that is,

D s 0 and D s 1 , for the general setting described in Section 2 . The differential will be used to compute fixed points through a

Newton method as well as their stability. Recall that s 0 is the composition of two stroboscopic maps (see Eq. (7) ). Since I ( t )

is a piecewise-constant function, the Jacobian matrix of the stroboscopic map can be computed by solving the variational

https://dynamicalsystems.upc.edu/en/computing/
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equations of system (1) for I constant. Calling z = (x, y ) , these variational equations become 

d 

dt 
δA (t; z) = 

(
∂ 
∂x 

f x (ϕ A (t; z)) ∂ 
∂y 

f x (ϕ A (t; z)) 
∂ 
∂x 

f y (ϕ A (t; z)) ∂ 
∂y 

f y (ϕ A (t; z)) 

)
δA (t; z) (B.1)

and 

δA (t; z) = 

(
∂ 
∂x 

ϕ 

x 
A 
(t; z) ∂ 

∂y 
ϕ 

x 
A 
(t; z)) 

∂ 
∂x 

ϕ 

y 
A 
(t; z)) ∂ 

∂y 
ϕ 

y 
A 
(t; z)) 

)
, 

where ϕ 

x 
A 
, ϕ 

y 
A 
, f x and f y denote the x and y component of the flow ϕA and the vector field f , respectively. Eq. (B.1) must be

integrated along with the flow ϕA ( t ; z ) using the identity matrix as initial condition for δA , i.e δA (0 ; z) = Id. 

Hence, for z ∈ S 0 , we have 

D s 0 (z) = δ0 ( T − d T ;ϕ A ( d T ; z ) ) · δA (dT ; z) . (B.2)

In order to compute the differential D s 1 (see definition of s 1 in Eq. (12) ), we need to take into account that the firing time,

t ∗ , depends on the initial conditions, i.e. t ∗ = t(z) . Thus, we compute Dt by means of applying the Implicit Function Theorem

to the equation 

F (t, z) := h (ϕ A (t; z)) = 0 . (B.3)

Let ( t ∗ , z ) be a solution of Eq. (B.3) ; that is, ϕ A (t ∗; z) ∈ T . Then, assuming that 

∂F 

∂t 
(t ∗, z) = ∇h (ϕ A (t ∗; z)) 

dϕ A 

dt 
(t ∗; z) 
 = 0 , (B.4)

we obtain t ∗ = t(z) and 

Dt(z) = −∂ F /∂ z 

∂ F /∂ t 
= − ∇h (ϕ A (t ∗; z)) · δA (t ∗; z) 

∇h (ϕ A (t ∗; z)) · ( f (z) + v A ) 
. 

Note that condition (B.4) is equivalent to requiring that the flow is not tangent to T at ϕA ( t ∗ ; z ), and hence this is only valid

when the spike is given by a transversal crossing between the flow and T . 
Then, the differentials of the maps (8) –(11) are 

DP 1 (z) = 

(
δA (t ∗; z) + ( f (z) + v A ) Dt(z) 

Dt(z) 

)

D ̃

 R (z, t) = 

( 

DR (z) 
0 

0 

0 0 1 

) 

D ̃

 P 2 (z, t) = 

(
δA (dT − t; z) −( f (z) + v A ) 

)
DP 3 (z) = δ0 (T − dT ; z) . 

Hence, we get 

D s 1 (z) = DP 3 (z 2 ) D ̃

 P 2 (z r , t 1 ) D ̃

 R (z 1 , t 1 ) DP 1 (z) , 

where 

(z 1 , t 1 ) = P 1 (z) (z r , t 1 ) = 

˜ R (z 1 , t 1 ) z 2 = 

˜ P 2 (z r , t 1 ) . 

Remark 14. Notice that in the computation of DP 1 we take into account that the original and perturbed orbit do not cross

the switching manifold at the same time. The method described herein to compute DP 1 is equivalent to the one devel-

oped in [47] , later adopted by the nonsmooth and mechanical-engineering community and named saltation (or correction )

matrix [48] . 

Appendix C. Numerical computation of bifurcation curves 

The set of equations describing the bifurcation curves consist always of n equations and n + 1 unknowns, defining a curve

on an n -dimensional space. In this section we will present a predictor-corrector method to compute such curves. The correc-

tor step is based on a Newton method and Lagrange multipliers. We refer to [49] for further details. In https://github.com/a-

granados/ContLagMult we provide the code of a general purpose implementation of this method in C ++ . In this repository

we also provide, to serve as example, the details to compute all bifurcation curves discussed in Section 6.2 . 

Let G(w ) = 0 be the set of n equations with w ∈ R 

n +1 . Assume that there exists w 

∗ ∈ R 

n +1 such that ‖G(w 

∗) ‖ is small.

We look for an improved solution by means of a Newton method. Thus, we look for �w such that w 

∗ + �w solves equation
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G(w ) = 0 up to square order, i.e we impose that G(w 

∗) + D G(w 

∗)�w = 0 , with the extra condition that ‖ �w ‖ 2 is a min-

imum. It becomes a poblem of finding the local minima subject to an equality constraint, which we will solve using the

method of Lagrange multipliers. We introduce the Lagrange multiplier μ ∈ R 

n and the Lagrange function: 

L = �w 

T �w + μT (D G(w 

∗)�w + G(w 

∗)) . 

Now imposing that ∂ L /∂ (�w ) = 0 and using the equality constraint, we are left with the following system of equations for

μ and �w : 

2�w 

T + μT D G(w 

∗) = 0 , 

G(w 

∗) + D G(w 

∗)�w = 0 , 

from where we obtain �w = −D G(w 

∗) T (D G(w 

∗) D G(w 

∗) T ) G(w 

∗) . We repeat the process until we obtain a point w new 

that

satisfies equation G up to the desired error. This provides a point on the curve. The next step is to compute another point

on the curve. To do so, we compute the tangent vector to the curve at the point w new 

and take a point at a distance δ along

this direction. Notice that the tangent vector is given by an element of the kernel of D G(w new 

) . This will be the initial seed

to repeat the Newton method procedure described above. 

To illustrate the method, we provide the details for the computation of two of the bifurcation curves reported in

Section 6.2 , corresponding to z̄ 1 ∈ �NS 
1 

and z̄ 1 ∈ �S 
1 

; the rest of the bifurcation curves can be obtained proceeding simi-

larly. 

For the case z̄ 1 ∈ �NS 
1 

, the function G is given by Eqs. (29) , and becomes 

G(ω) = 

(
ϕ A (−t 1 ;V 1 , V 1 ) − ϕ 0 (T − dT ;V 2 , V 2 ) 
( V 2 , V 2 ) 

T − ϕ A ( dT − t 1 ;V r , V 1 + �) 

)
, 

with ω = (V 1 , V 2 , t 1 , b, A ) ∈ R 

5 . Note that G(w ) ∈ R 

4 , as the flow is 2-dimensional. The derivatives in D G involving the vari-

ables V 1 , V 2 are obtained integrating the variational equations of system (22) , and the ones involving t 1 are given by the

vector field. Regarding the derivatives with respect to parameters b and A , one needs to consider them as variables of the

system and increase its dimension from 2 to 4 by adding the equations ˙ b = 0 and 

˙ A = 0 . Then, the derivatives with respect

to b and A are obtained from the variational equations of this new extended system. Using the notation of Appendix B , the

variational equations for the extended system become 

d 

dt 
˜ δA = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

D f (ϕ A (t; z)) 0 

∂ 

∂A 

f V (ϕ A (t; z)) 

∂ 

∂b 
f θ (ϕ A (t; z)) 0 

0 0 0 0 

0 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

˜ δA (C.1) 

where 

˜ δA (t; z, b, A ) = 

⎛ 

⎜ ⎜ ⎝ 

δA (t; z) ∂ 
∂b 

ϕ 

V 
A (t; z) ∂ 

∂A 
ϕ 

V 
A (t; z) 

∂ 
∂b 

ϕ 

θ
A 
(t; z) ∂ 

∂A 
ϕ 

θ
A 
(t; z) 

0 0 1 0 

0 0 0 1 

⎞ 

⎟ ⎟ ⎠ 

, 

and δA ( t ; z ) is defined in Appendix B with z = (V, θ ) . 

With this notation we get 

∂ 

∂V 1 

G(V 1 , V 2 , t 1 , b, A ) = 

⎛ 

⎜ ⎝ 

δ1 , 1 
A 

(−t 1 ;V 1 , V 1 ) + δ1 , 2 
A 

(−t 1 ;V 1 , V 1 ) 

δ2 , 1 
A 

(−t 1 ;V 1 , V 1 ) + δ2 , 2 
A 

(−t 1 ;V 1 , V 1 ) 

−δ1 , 2 
A 

(dT − t 1 ;V r , V 1 + �) 

−δ2 , 2 
A 

(dT − t 1 ;V r , V 1 + �) 

⎞ 

⎟ ⎠ 

, 

∂ 

∂V 2 

G(V 1 , V 2 , t 1 , b, A ) = 

⎛ 

⎜ ⎝ 

−δ1 , 1 
0 

(T − dT ;V 2 , V 2 ) − δ1 , 2 
0 

(T − dT ;V 2 , V 2 ) 

−δ2 , 1 
0 

(T − dT ;V 2 , V 2 ) − δ2 , 2 
0 

(T − dT ;V 2 , V 2 ) 
1 

1 

⎞ 

⎟ ⎠ 

∂ 

∂t 1 
G(V 1 , V 2 , t 1 , b, A ) = 

⎛ 

⎜ ⎝ 

−( f V (z 1 ) + A ) 

− f θ (z 1 ) 
f V (z 2 ) + A 

f θ (z 2 ) 

⎞ 

⎟ ⎠ 

z 1 = ϕ A (−t 1 ;V 1 , V 1 ) 
z 2 = ϕ A (dT − t 1 ;V r , V 1 + �) , 
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∂ 

∂b 
G(V 1 , V 2 , t 1 , b, A ) = 

⎛ 

⎜ ⎝ 

˜ δ1 , 3 
A 

(−t 1 ;V 1 , V 1 , b, A ) − ˜ δ1 , 3 
0 

(T − dT ;V 2 , V 2 , b, A ) 
˜ δ2 , 3 

A 
(−t 1 ;V 1 , V 1 , b, A ) − ˜ δ2 , 3 

0 
(T − dT ;V 2 , V 2 , b, A ) 

− ˜ δ1 , 3 
A 

(dT − t 1 ;V r , V 1 + �, b, A ) 

− ˜ δ2 , 3 
A 

(dT − t 1 ;V r , V 1 + �, b, A ) 

⎞ 

⎟ ⎠ 

, 

and 

∂ 

∂A 

G(V 1 , V 2 , t 1 , b, A ) = 

⎛ 

⎜ ⎝ 

˜ δ1 , 4 
A 

(−t 1 ;V 1 , V 1 , b, A ) 
˜ δ2 , 4 

A 
(−t 1 ;V 1 , V 1 , b, A ) 

− ˜ δ1 , 4 
A 

(dT − t 1 ;V r , V 1 + �, b, A ) 

− ˜ δ2 , 4 
A 

(dT − t 1 ;V r , V 1 + �, b, A ) 

⎞ 

⎟ ⎠ 

. 

Similarly, for the smooth grazing bifurcation corresponding to z̄ 1 ∈ �S 
2 

the function G is given by Eqs. (30) and has the form 

G(ω) = 

( 

ϕ A (−t 1 ; (V 1 , V 1 )) − ϕ 0 (T − d T ;ϕ A (d T − t 1 − t 2 ;V 2 , V 2 )) 
( V 2 , V 2 ) 

T − ϕ A ( t 2 ;V r , V 1 + �) 
−V 2 + V 0 + A − 1 /τθ ( −V 2 + θ∞ 

(V 2 ) ) 

) 

, 

with ω = (V 1 , V 2 , t 1 , t 2 , b, A ) ∈ R 

6 . Note that now G ∈ R 

5 , and the last equation imposes a tangency when reaching the thresh-

old at ( V 2 , V 2 ). The differential D G is obtained proceeding as before taking into account that we need to apply the chain

rule due to the composition ϕ 0 ◦ϕ A . 

Appendix D. Numerical computation of periodic orbits 

In this section we describe the algorithm to compute periodic orbits of the stroboscopic map. In

https://github.com/ghuguet/PerOrbVtheta we provide the code in C ++ used to compute the periodic orbits for the

stroboscopic map of system (22) –(24) , considered in this paper. 

Periodic orbits of the system are computed by integrating forward a set of initial conditions on the region S 0 . For each

initial condition we compute N = 100 iterates of the stroboscopic map and we keep the last point x f in a list of points L f
as well as the previous one x a ( x f = s (x a ) ) in a list of points L a . We also keep track of the number of spikes that occur

between x a and x f . When several initial conditions yield the same points x a and x f , we keep them only once. Once we have

computed the iterations for all points in the subthreshold domain, we check whether the points in the list L a coincides with

the points in the list L f . If there is a point x̄ a in L a which is not present in L f , we add x̄ a in the list L f and s −1 ( ̄x a ) in the

list L a . Analogously, if a point x̄ f in L f is not present in L a , we add x̄ f in the list L a and s ( ̄x f ) in the list L f . We repeat this

procedure until both lists contain the same points. If after several iterations both lists are still different, the program returns

the message that the computation of periodic orbits has failed. Otherwise, once both lists are equal, we order them while

constructing a map ν that maps the position i of the point x a in the ordered list L a to the position j of its image x f = s (x a )

in the ordered list L f , i.e. ν(i ) = j. For each pair ( i, j ) we also keep track of the number of spikes that occur. Let us call this

number s i A fixed point of the stroboscopic map corresponds to ν(i ) = i, while a periodic orbit of period q corresponds to 

νq (i ) = i, where νk (i ) 
 = i, for k = 1 , . . . , q − 1 . 

Hence, we use the map ν to compute the number of fixed points and periodic orbits. Moreover, for each periodic orbit we

compute its period q and for periodic orbits stepping only on S 0 and S 1 , we keep its itinerary given by (s i , s ν(i ) , . . . , s νq −1 (i ) ) ∈{ 0 , 1 } q . 
Using this itinerary we compute whether the periodic orbit is maximin. From a computational point of view,

Definition 5 is not practical to decide whether a symbolic sequence is maximin or not. Instead, we use the following equiv-

alent definition of maximin using the notion of p, q -ordered sequences (see [19] for details): 

Definition 6. Let x ∈ W p, q be a periodic symbolic sequence. Consider the (lexicographically) ordered sequence given by the

iterates of x by σ

σ i 0 (x ) < σ i 1 (x ) < σ i 2 (x ) < . . . < σ i q −1 (x ) . (D.1)

We say that the sequence x is a p, q -ordered (symbolic) sequence if 

i j − i j−1 = constant . 

In other words, a sequence x ∈ W p, q is p, q -ordered if σ acts on the sequence (D.1) as a cyclic permutation, i.e. there

exists some k ∈ N , 0 < k < q , such that 

i j = i j−1 + k ( mod q ) . (D.2)

Then, from [50] , one has that a symbolic sequence x ∈ W p, q is maximin if, and only if, it is p, q -ordered. 

Using this definition, checking computationally whether a symbolic sequence is maximin becomes simpler and faster,

as one does not need to compare, element by element, the sequence with the rest of sequences in the set W p, q . The al-

gorithm is as follows. Given a symbolic sequence x ∈ W p, q we consider the q sequences given by σ i ( x ) with 0 ≤ i < q . To
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order them lexicographically, we simply consider them as integer numbers written in binary. Thus, for a symbolic sequence

x = (x 0 , . . . , x q −1 ) we compute 

a (x ) = 

q −1 ∑ 

i =0 

x i 2 

i . 

Let us define a i := a ( σ i ( x )). Then, note that σ i ( x ) < σ j ( x ) if, and only if, a i < a j . Hence we easily get a sequence 

a i 0 < a i 1 < · · · < a i q −1 
. 

Then, if condition (D.2) is satisfied for all indices i j , 0 ≤ j < q the sequence x is maximin. 
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