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Abstract Based on a recently obtained Lemma about
periodic orbits in linear systems with a piecewise-
linear non-autonomous periodic control, we describe
analytically the bifurcation structures in a ZAD-
controlled buck converter. This analytical description
shows that the period doubling bifurcation in this sys-
tem may be both subcritical or supercritical. Consid-
ering virtual orbits we show how a saddle-node bifur-
cation becomes feasible and how it is destroyed at a
new codimension-2 bifurcation point, where the sub-
critical period doubling bifurcation becomes supercrit-
ical. We also show that this phenomenon does not take
place when the error surface in the ZAD conditions
piecewise-linear defined.
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1 Introduction

Nowadays, due to the increasing use of mobile elec-
tronic devices and to the avoiding fuel tendency, the
use of batteries is being more and more extended. En-
ergy saving demands not only enhanced efficiency in
these power supply devices, but also a more accu-
rate control of the conversion of the voltage obtained
from the battery and the one requested by the elec-
tronic device. This conversion is achieved by a DC/DC
power electronic converter applying two different cir-
cuits during specific times, and repeating this opera-
tion in a high frequency manner. The key aspect of the
control of this device and therefore the quality of the
desired voltage is the design of a duty cycle which de-
termines these specific times and, in the most sophisti-
cated cases, may vary with the system variables (usu-
ally a current and a voltage). The switching behavior
of this converter leads to a model which is piecewise
smooth on the right hand side (also called Filippov
systems), and the repeating behavior makes the system
non-autonomous but periodic. This property permits
the use of averaging methods for the control design,
such as working with the averaged system (see for in-
stance [11]) or the use of the so-called ZAD strategy
(zero average dynamics) extensively numerically, ana-
lytically and also experimentally studied in [2, 3, 5, 9].

In this work we consider a DC/DC buck converter
controlled by a method based on the ZAD strategy, in-
troduced by Biel and coworkers in [9], leading the con-
trol design the choice of a certain time constant. In the
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two-dimensional parameter space defined by this time
constant and the desired constant voltage not only phe-
nomena typical for smooth systems as period doubling
bifurcations but also corner collision bifurcations typ-
ical for non-smooth systems occur.

The interactions of smooth and non-smooth bifur-
cation phenomena has drawn the attention of many
researchers and led them to investigate this kind of
systems. Many authors investigating smooth and non-
smooth bifurcation phenomena use the buck converter
as paradigm (we refer to [8] for a comprehensive
overview about the state of the art in this field). Re-
cent studies [4, 10] performing a two-parameter bifur-
cation analysis of the ZAD-controlled buck converter
show, that this parameter space has a rich and complex
structure.

These studies focused on the use of two different
control laws. The first one (transcendental ZAD con-
dition) needs the duty cycle to be calculated through a
transcendental equation which has to be solved at each
step, but permits the use of theoretical results to per-
form an analytical study of the bifurcations [10]. The
second one (algebraic ZAD condition) leads to an al-
gebraic expression for the suitable duty cycle which
permits an easier implementation in hardware and for
simulations proposes, but the bifurcation phenomenon
has to be investigated mainly numerically [4].

The period doubling and corner collision bifurca-
tion curves reported in both works present qualita-
tive differences. In [10] both curves cross at three
codimension-2 bifurcation points leading them to
change their relative position (as shown below in
Fig. 3). By contrast, in [4] only two of these points
exist so that the period doubling bifurcation curve
remains on the right hand side of the corner colli-
sion bifurcation in the whole parameter space. Fol-
lowing [10], we present in this work analytical results
showing that the period doubling bifurcation may be
supercritical or subcritical leading the orbits emerg-
ing at this bifurcation to be stable or unstable, respec-
tively, in different regions of the parameter space. By
contrast to this, we show also that when using the alge-
braic ZAD condition, the period doubling bifurcation
is supercritical for all parameter values. When dealing
with the transcendental ZAD condition, we demon-
strate that the transition from the supercritical to the
subcritical period doubling bifurcation is associated
with a saddle-node bifurcation. The saddle-node bi-
furcation curve originates from a point at the corner

collision bifurcation curve and is destroyed where it
collides with the period doubling curve. The charac-
teristics of this bifurcation curve not only permits us
to detect a new codimension-2 bifurcation point but
also to explain the behavior of 2-periodic orbits near
the other points of this type.

The saddle-node bifurcation leads us to distinguish
between feasible and virtual orbits. Moreover, stable
virtual 2-periodic solutions permit us to justify the ex-
istence of saturated 2-periodic orbits after the corner
collision bifurcation, that is, 2-periodic orbits without
switching behavior in one sampling period.

This paper is organized as follows. In Sect. 2 an
introduction to the system and the ZAD condition is
given. In Sect. 3 we present a brief review of the pre-
vious results, introduce the concept of virtual and fea-
sible orbits and state our main results. In Sect. 4 we
discuss numerical simulations in order to confirm the
analytical results, and compare them additionally with
the ones obtained when using the algebraic ZAD con-
dition. Finally we conclude in Sect. 5.

2 System description and ZAD strategy

Let us consider the electronic power converter shown
schematically in Fig. 1. This kind of device is called
a DC/DC buck converter as it reduces a certain input
voltage E to another certain voltage vo which is de-
sired to follow a reference signal ωref which can be
constant or not [12, 13].

As one can see in Fig. 1, the circuit is regulated by a
PWM (Pulse Width Modulator) block which switches
the system between two topologies shown in Fig. 2.
System is in topology A (Fig. 2(a)) during a specific
time Ton = d T , while it is in topology B during Toff =
(1−d)T seconds. This is repeated every T seconds so
that, if the parameter d is constant, then the system has
a periodic behavior.

Fig. 1 Schematic representation of the investigated system
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Fig. 2 Switching topologies for the buck converter

Besides the values of the inductor (L), capacitor
(C) and resistor (R), the key of the control design in
order to make vo follow the reference signal ωref is
the value of the parameter d . There are many ways to
design a control method solving this control problem.
The method we consider here is proposed by [9]. It
is called ZAD (Zero Average Dynamics) and its goal
is to achieve the zero average difference between the
output vo and the desired voltage ωref and their deriv-
atives in each period T .

2.1 System equations

Let i and v0 be the current through the inductor and the
voltage across the capacitor, also the output voltage,
respectively. Taking

x1 = 1

E
vo, x2 =

√
L

C

1

E
i

as state variables and rescaling time as

t = τ√
LC

,

the dimensionless system equations can be written in
matrix form as

ẋ = Ax + u, (1)

where x = (x1, x2)
T ,

A =
(−γ 1

−1 0

)
, γ = 1

R

√
L

C

and the function

u =

⎧⎪⎨
⎪⎩

B1 if kT ≤ t ≤ kT + 1
2T d,

B2 if kT + 1
2T d ≤ t ≤ (k + 1)T − 1

2T d,

B1 if (k + 1)T − 1
2T d ≤ t < (k + 1)T

(2)

models a central PWM with B1 = (0,1)T , B2 = (0,0)T

and duty cycle d during the sampling period k T . As
one can see from (2), the value d must be in the feasi-
ble interval [0,1]. Hereby the value d = 0 corresponds
to u = B2 (topology B) whereas d = 1 corresponds to
u = B1 (topology A) for t ∈ [kT , (k + 1)T ]. We will
say that the system gets saturated if one of these situ-
ations occurs.

2.2 Poincaré map

In order to cover a deeper analysis of the systems be-
havior, like existence of periodic orbits and bifurca-
tion curves, it is useful to consider the Poincaré map
instead of the original flow. As system (1) is non-
autonomous but periodic, we can define the Poincaré
map as the stroboscopic mapping P(x0) := Φ(T ,x0),
where Φ(t, x0) is the flow of system (1) verifying
Φ(0, x0) = x0.

As explained in [10], one can additionally take ben-
efit of the linearity of the system (1) to piecewise-
integrate it and obtain an explicit expression for the
Poincaré map

P(x0, d) = eAT x0 + (
eAT − I

)
A−1B1

+ (
eAT d/2 − eAT (1−d/2)

)
A−1B1. (3)

Note that n-periodic orbits of this map discussed in
the following are associated with nT -periodic orbits
of the original flow. Especially, a fixed point of the
Poincaré map corresponds to a T -periodic orbit of the
original flow.

2.3 ZAD strategy

As it has been explained in the introduction, in order
to make the output of the system vo to follow a certain
desired signal wref > 0, one can use the ZAD strat-
egy. Setting vref = wref/E and using the dimension-
less variables, as in [6, 7] and [14], one first defines
the error surface

s(t) := (
x1(t) − vref

) + ks

(
ẋ1 − v̇ref

)
, (4)

where parameter ks is a time constant associated with
first order dynamics of the error surface s(t) = 0. Tak-
ing into account that our choice here is to consider vref

as a constant, (4) can be simplified as

s(t) = (
x1(t) − vref

) + ks ẋ1. (5)
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Once s(t) is defined, the ZAD strategy consists on
finding the appropriate value of the duty cycle d for
which the function s(t) has zero average at each itera-
tion, that is
∫ (k+1)T

kT

s(t) dt = 0, ∀k ∈ Z. (6)

Note, that solving (6) in each iteration corresponds to
the closed loop control design which causes the duty
cycle d to depend on the state variables at time kT .
In the following, this k-dependent duty cycle will be
denoted as dk . As proposed in [10], in order to obtain
an analytical expression for dk one has to rewrite the
function s(t) in terms of the flow.

Eliminating ẋ1 in (5) using (1), it is easy to see that
(6) can be written as the following equation which is
transcendental in dk

0 =
∫ (k+1)T

kT

s(t) dt

= (1 − γ ks, ks)

∫ T

0
Φ(t, x0, dk) dt − vrefT , (7)

where the initial condition x0 represents the value of
the system state variables at time kT . The expression
of the integral of the flow in (7) is given by

∫ T

0
Φ(t, x0, dk) dt

= T A−1B1dk + A−1[(eAT − I
)(

x0 + A−1B1
)

+ (
eAT dk/2 − eAT (1−dk/2)

)
A−1B1

]
. (8)

Therefore, (7) together with (8) gives an implicit
expression which can be solved numerically with re-
spect to dk at each sampling period although it in-
creases considerably computation costs. As explained
for example in [1, 4], in order to avoid solving (7) and
(8) and to reduce the complexity of the hardware im-
plementation, one can replace the error surface s(t)

defined in (4) by a piecewise-linear function in order
to obtain an algebraic expression for the duty cycle

dk = 2ksγ − 2 + T (γ − ks(γ
2 − 1))

T ks

x1(kT )

− 2ks + T (1 − ksγ )

T ks

x2(kT ) − 2vref

T ks

. (9)

Note that this strategy uses only the values x1(kT ) and
x2(kT ) at the beginning of the sampling period in-

stead of using the solution x1(t) in the whole interval
[kT , (k + 1)T ].

As studied in [1], the average error committed be-
tween the real output and the desired one when using
this condition is completely acceptable from a prac-
tical point of view. However, as we will numerically
show in Sect. 4, this leads to some differences with the
transcendental one.

From now on, as we will mainly follow [10], we
will refer to the transcendental ZAD condition (6) just
as ZAD condition.

3 Bifurcation analysis

3.1 Periodic orbits

The strongest foundation of almost all analytical re-
sults concerning periodic orbits discussed below is
given by the following Lemma:

Lemma 1 (Fossas et al.) Given a linear system ẋ =
Ax + u where A is hyperbolic, u is piecewise-linear
and L-periodic, such that

∫ L

0 u(t) dt = 0, then there
exists a unique L-periodic solution x = xp(t) such

that
∫ L

0 xp(t) dt = 0.

A proof of the Lemma can be found in [10].
Applying a change of variables one can see that

the previous Lemma implies the existence of a unique
T -periodic solution with d = vref = const which ful-
fills the ZAD condition (see [10] for details). The ini-
tial condition x∗

0 for this unique T -periodic orbit can
be found solving the equation

P(x0, d) = x0, (10)

which explicit expression can be found in [10].
Notice that this result can be extended to nT -peri-

odic solutions as follows. Denoting by

x

n times︷ ︸︸ ︷∗ · · · ∗
i,(d1,...,dn) (11)

the ith iterated of the Poincaré map of an n-periodic
orbit with duty cycles (d1, . . . , dn), the initial condi-
tion x∗···∗

0,(d1,...,dn) of this orbit is given by the solution
of

P n(x0, d1, . . . , dn) = x0, (12)
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where P n(x0, d1, . . . , dn) = P(P (. . . P (x0, d1),

. . . , dn)). Applying the Lemma with L = nT , it is
shown in [10] that the unique nT -periodic orbit with
initial conditions x∗···∗

0,(d1,...,dn)
satisfies the ZAD condi-

tion in the whole interval nT if

n∑
i=1

di = nvref. (13)

In order to guarantee that the ZAD condition is satis-
fied in each iteration, (7) has to be ensured only for
k = 1, . . . , n−1, as it will be automatically fulfilled in
the remaining iteration due to condition (13).

As it will be useful below, we give here the corre-
sponding results for the case n = 2. In this case the
initial condition is given by

x∗∗
0,(d1,d2)

= (−e2AT + eAT (2−d1/2) − eAT (1+d1/2)

+ eAT (1−d2/2) − eAT d2/2 + I
)

× (
e2AT − I

)
A−1B. (14)

As explained above, the ZAD strategy is fulfilled in
both iterations of the 2-periodic orbit if both duty cy-
cles d1 and d2 satisfy the equations

(1 − γ ks, ks)

∫ T

0
Φ

(
t, x∗∗

0,(d1,d2)
, d1

)
dt − vrefT = 0,

(15)

(1 − γ ks, ks)

∫ 2T

T

Φ
(
t, x∗∗

1,(d1,d2)
, d2

)
dt − vrefT = 0.

(16)

However, using L = 2T , the Lemma implies that only
one of the (15) and (16) needs to be solved. After one
of the values d1, d2 is calculated, the other one results
from the condition

d1 + d2 = 2vref. (17)

Note that, as the above Lemma can not be applied,
a similar analytical procedure is not possible when us-
ing the algebraic ZAD condition. This is why a com-
parison between both methods will be performed nu-
merically in Sect. 4.

3.2 Period doubling and corner collision bifurcations

As already reported in [10], system (1) undergoes two
bifurcations, a usual period doubling and a corner col-
lision bifurcation.

Fig. 3 Period doubling (pd) and corner collision (cc) bifur-
cation curves as reported in [10]. Here and in subsequent fig-
ures and simulations, the chosen parameters are γ = 0.35 and
T = 0.1767

The period doubling bifurcation can be detected us-
ing the condition that one of the eigenvalues of the Ja-
cobian of the Poincaré map evaluated at the fixed point
equals minus one. So, the expression

det
(
DP

(
x∗

0 , d
) + I

) = 0, (18)

where x∗
0 represents the solution of (10) and d = vref in

order to verify the ZAD condition, leads to the period
doubling bifurcation curve. This bifurcation is men-
tioned in [10] to be a subcritical period doubling. In
fact, as we will demonstrate below, it may be a sub-
critical or supercritical period doubling bifurcation de-
pending on the value of vref. One of our main goals
is to explain how the system undergoes the transition
from one case to the other one and which are the dif-
ferences of the behaviors in both cases. In addition, it
will also be shown in Sect. 4 that the period doubling
bifurcation is supercritical for all values of vref when
using the algebraic ZAD condition.

With regard to the corner collision bifurcation, as
it is explained in [4], it occurs when one of the duty
cycles of a 2-periodic orbit reaches the values d = 1
or d = 0 and the periodic orbit saturates. On the other
hand, the Lemma applied to a 2T -periodic orbit im-
plies d1 + d2 = 2vref in order to satisfy the ZAD
condition in the whole 2T period. Therefore, a satu-
rated behavior with the duty cycles (1, d2) is possi-
ble if vref ∈ [ 1

2 ,1] and with the duty cycles (d1,0) if
vref ∈ [0, 1

2 ]. Consequently, the corner collision curve
can be calculated for vref ≥ 1

2 by (7) using initial con-
dition x∗∗

0,(1,d2)
, d1 = 1 and d2 = 2vref − 1. For vref ≤ 1

2
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Fig. 4 Subcritical and supercritical period doubling bifurcation at vref = 0.7 (a) and vref = 0.3 (b). Solid and dashed curves correspond
to stable and unstable solutions, respectively

this bifurcation curve results from the same equation
with the initial condition x∗∗

0,(d1,0), d1 = 2vref and d2 =
0. The initial conditions x∗∗

0,(1,d2)
and x∗∗

0,(d1,0) can be
found setting d1 = 1 and d2 = 0, respectively, in (14).

As a consequence, the corner collision bifurcation
curve is piecewise-defined. The point D located at
vref = 1

2 separates the pieces of this curve defined by
different saturation conditions. Note that the corner
collision bifurcation curve is non-smooth at this point.

Figure 3 shows the period doubling and the corner
collision bifurcation curves described above. As one
can see, there exists a crossing point, C = (kC

s , vC
ref),

between both curves for which both bifurcations occur
at the same values of ks and vref. As mentioned above,
the period doubling bifurcation is either subcritical or
supercritical, depending on the value of vref, as shown1

in Fig. 4 for values of vref sufficiently far from vC
ref.

As we will demonstrate below, although C does
not separate these two behaviors, it is a codimension-2
bifurcation point and plays an important role for the
description of the system’s dynamics in the parame-
ter space. On the other hand, points A and F are also
codimension-2 points where also both bifurcations oc-
cur at the same values of vref and ks . However, as it
will be clear from further explanations, 2-periodic or-
bits created by the period doubling at these points are
immediately destroyed by the corner collision bifurca-
tion.

1Notice that if the ZAD condition is fulfilled, then the behavior
of the duty cycle d is more significant for the control strategy
than the values of the current and voltage. Due to this we show
in Fig. 4 and all bifurcation diagrams below the behavior of d .

Regarding the codimension-2 bifurcation point
B = (kB

s , vB
ref), it is not given by a crossing point be-

tween both curves as will be discussed below.

3.3 Virtual, feasible and saturated periodic orbits

So far, we considered only orbits located at the feasible
domain d ∈ [0,1]. In order to explain the transition
between the situations shown in Figs. 4(a) and (b), let
us neglect the saturation condition and state the next

Definition A (d1, d2) 2-periodic orbit of the Poincaré
map (3) is said to be feasible if 0 ≤ di ≤ 1 for i = 1,2.
It is said to be virtual or not feasible otherwise.

In order to obtain both feasible and virtual orbits let
us vary d1 in [vref, dmax], with some dmax > 1. Obtain-
ing d2 from (17) and ks from (15) or (16), we get for
vref > vB

ref the bifurcation diagram shown in Fig. 5(a)
where both feasible and virtual orbits are presented.
There one can see that the branches of the 2-periodic
solution can be better approximated by a fourth-order
polynomial instead of a typical parabola. This polyno-
mial can be written as

−ks(d) = a4(d − vref)
4 + a2(d − vref)

2 + a0, (19)

and is symmetric with respect to the line d = vref. Al-
though the coefficients a0, a2 and a4 depend on vref,
in the parameter region we consider the coefficient a4

is always positive. Point M located at the line d = vref

corresponds to the period doubling bifurcation. Hence,
the type of this bifurcation depends on the sign of a2.
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Fig. 5 (a) Bifurcation diagram showing both feasible and virtual orbits for vref = 0.7. (b) Critical eigenvalue of DP2(x∗∗
0,(d1,d2)). Solid

and dashed curves represent, respectively, stability and instability, black and gray curves show feasible and virtual orbits, respectively

For a2 > 0 the bifurcation is supercritical while for
a2 < 0 it is subcritical. In this last case, the function
(19) has two additional minima, m1 and m2 as shown
in Fig. 5(a). Obviously, these points represent a saddle-
node bifurcation, but as they are located outside the
feasible domain d ∈ [0,1] the orbits emerging at these
bifurcations are virtual.

The corresponding evolution of the critical eigen-
value of DP2(x∗∗

0,(d1,d2)
) is shown in Fig. 5(b).2 Notice

that this eigenvalue reaches +1 not only at the period
doubling but also at a saddle-node bifurcation.

In the situation shown in Fig. 5(a), the stable branch
remains virtual for all parameter values, whereas the
unstable branch reaches the domain [0..1] and be-
comes feasible via a corner collision bifurcation. Ob-
viously, a variation of vref not only influences the lo-
cation of the points m1, m2 with respect to the feasible
domain [0..1] permitting the stable 2-periodic orbits
to become feasible (or to “appear”), but also the shape
of the fourth-order polynomial leading the system to
different dynamical behaviors. Especially, it is possi-
ble that for some other values of vref the coefficient a2

changes its sign and the polynomial (19) loses its lo-
cal minima m1 and m2 and therefore the saddle-node
bifurcation will be destroyed.

The situation shown in Fig. 5(a) leads us imme-
diately to the following observation. In the right part

2One can obtain an analytical expression for DP2(x∗∗
0,(d1,d2))

from (12) taking into account that d1 and d2 depend on x0 via
the ZAD condition at each iteration and applying twice the Im-
plicit Function Theorem.

of this figure the fixed point is stable and, assuming
that no other bifurcation occur between the consid-
ered ones, the initial values from the complete feasible
interval [0,1] converge to this fixed point. Then the
question arises what is the asymptotic dynamics of the
system in the left part of the figure, that means in case
that the fixed point is unstable. To explain that we have
to notice that in this case there exists a stable virtual
2-periodic orbit. Although this orbit is not feasible, it
has a basin of attraction and may therefore influence
the dynamics. Especially, on the left side of the period
doubling bifurcation (point M in Fig. 5) all typical ini-
tial values from the interval [0,1] are attracted by this
virtual orbit. However, as the orbits can not leave the
feasible interval, they “stick” at its boundary forming
a saturated 2-periodic orbit. It is worth noticing that in
general the saturated orbits do not represent an invari-
ant set of the underlying flow and emerge only because
the orbits have to remain within the feasible domain.
As a consequence, these saturated orbits can not be
unstable.3 As one can clearly see in Fig. 5(a), between
the period doubling bifurcation and the saddle-node
bifurcation the stable fixed point coexists with the sta-
ble virtual 2-periodic orbit. To explain which behavior
can be observed in this case, note that the basins of at-
traction of these solutions are separated by the unsta-
ble 2-periodic orbit. Therefore, two situations are pos-
sible. If the unstable 2-periodic orbit is feasible (on the

3Note that the behavior in the non-generic cases vref = 0 and
vref = 1 is different. In this case the fixed point is located at the
boundary of the feasible domain and may be stable or unstable.
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Fig. 6 Period doubling (pd), corner collision (cc) and feasible saddle-node (sn) bifurcation curves. The bifurcation diagrams along
the lines marked with csi , i = 1..8, are shown in Fig. 7. Inset shows the dashed rectangle enlarged

left side of the corner collision bifurcation), the stable
fixed point coexists with a stable saturated 2-periodic
orbit. By contrast, if the unstable 2-periodic orbit is
virtual (on the right side of the corner collision bifur-
cation), the basin of attraction of the stable 2-periodic
orbit does not reach the feasible domain and therefore
the stable fixed point represents the only attractor.

To conclude, we state that orbits in the investi-
gated system can be stable or unstable, feasible or vir-
tual, saturated or not. Transitions between all these
behaviors are organized by several points in the two-
dimensional parameter space, as described in the next
section.

3.4 Bifurcations of virtual and feasible orbits

A variation of vref leads the positions of the point M

(which corresponds to the period doubling bifurcation)
as well as of the points m1 and m2 (corresponding to

the saddle-node bifurcation) to be changed. Recall that
point M is located on the symmetry axis of the fourth-
order polynomial, which is given by d = vref. Conse-
quently, as vref ∈ (0,1), the orbits emerging at the pe-
riod doubling bifurcation are always feasible. More-
over, for suitable values of vref, the points m1 and m2

may be located in the domain [0,1]. In this case, the
orbits undergoing the saddle-node bifurcation are also
feasible.

In Fig. 6 additionally to the period doubling and
corner collision bifurcation curves also the curve of
the saddle-node bifurcation involving feasible orbits is
shown. Several characteristic situations of the 2-peri-
odic orbits depending on the shape and location of
the fourth-order polynomial are shown in Fig. 7 corre-
sponding to the cross-sections labeled in Fig. 6. Note
that Fig. 7 shows also the saturated orbits which occur
if the basin of attraction of the stable virtual 2-periodic
orbits reaches the feasible domain, as discussed above.



Virtual orbits and two-parameter bifurcation analysis in a ZAD-controlled buck converter 27

Fig. 7 Bifurcation diagrams corresponding to lines labeled as csi , i = 1..8, in Fig. 6. Saturated orbits are also shown. Period doubling
(pd), corner collision (cc) and saddle-node (sn) bifurcations are marked
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First of all, the position of the point M leads us to
discuss two different behaviors below and above point
D in Fig. 6.

Point D

Due to the symmetry of the fourth-order polynomial
with respect to the horizontal line d = vref, the corner
collision bifurcations are different in the cases vref > 1

2
and vref < 1

2 . In the first case, 2-periodic orbits be-
come virtual due to the collision of its upper branch
with the upper boundary of the feasible region d = 1,
and one duty cycle of the 2-periodic orbit equals one
(the orbit saturates to one). This situation is shown
in Figs. 7(a)–(f). By contrast, if vref < 1

2 , the lower
branch of the 2-periodic orbit collides with the lower
boundary of the feasible region and the orbit saturates
to zero (Fig. 7(h)).

Obviously, there exists a point, D = (kD
s , 1

2 ), which
separates this two different behaviors and where the
two branches of the 2-periodic orbit collide with both
boundaries of the feasible region at the same value of
ks , so that the orbit after the corner collision bifurca-
tion becomes saturated with duty cycles equal to one
and to zero. This case is shown in Fig. 7(g), which cor-
responds to the cross section cs7 in Fig. 6.

From Fig. 7 it is also clear, that there exists a value
of vref for which the saddle-node bifurcation points,
m1 and m2, become feasible. This leads us to discuss
the points B and B ′ marked in Fig. 6.

Points B , B ′ and the saddle-node bifurcation curve

Recall that in the situation shown in Fig. 5(a), the
coefficients a4 and a2 in (19) are positive and neg-
ative, respectively. As vref decreases, a2 increases so
that points m1, M and m2 become closer. As the pe-
riod doubling bifurcation point M remains always in
the feasible region, there exists a value of vref for
which the points m1 and m2 also enter the feasible
region so that the orbits emerging at the saddle-node
bifurcation become feasible. Therefore, there exists a
codimension-2 point labeled as point B = (kB

s , vB
ref)

where both the saddle-node and the corner collision
bifurcation occur for the same value of ks . This situ-
ation is shown in Fig. 7(b), which corresponds to the
cross section cs2 in Fig. 6.

For the values of vref close but below vB
ref, the

saddle-node bifurcation curve becomes feasible and

persists until it coincides with the period doubling
bifurcation curve at point B ′ = (kB ′

s , vB ′
ref) labeled in

Fig. 6. At that point, the coefficient a2 reaches zero
and points m1, M and m2 coincide.

For the values of vref decreased further, the coeffi-
cient a2 is positive, and since the coefficient a4 always
remains positive, the fourth-order polynomial (19) will
lose its two minima. Hence, the saddle-node bifurca-
tion curve disappears for vref ≤ vB ′

ref. Therefore, point
B ′ is also another codimension-2 bifurcation point
where the saddle-node and the period doubling bifur-
cation occur at the same value of ks . In other words,
the unstable 2-periodic orbit is destroyed if vref ≤ vB ′

ref
and the period doubling becomes supercritical. This is
shown in Fig. 7(f), corresponding to the cross section
cs6 in Fig. 6.

Due to the feasibility of the saddle-node bifurca-
tion points, there exists a region of coexistence of both
feasible stable and unstable 2-periodic orbits between
points B and B ′. This region is bounded by the saddle-
node bifurcation curve on the right, and by the period
doubling or the corner collision curves on the left, de-
pending on whether vref is above or below the labeled
point C. This last distinction of the left boundaries of
the feasible coexistence region leads us to discuss the
last point of interest, point C.

Note also that as long as 2-periodic orbits are fea-
sible no attractor is located in the virtual region and,
therefore, no saturated orbits are possible as shown in
Figs. 7(c)–(h).

Point C

Once the saddle-node bifurcation points m1, m2 are
located in the feasible region, the point M remains on
the left of the corner collision bifurcation point where
the orbits become saturated (see Fig. 7(c)). As vref

decreases, point M tends to move to the right while,
on the contrary, the collision of the stable branches
of the fourth-order polynomial with the boundaries of
the feasible region (corner collision) moves to the left
(compare Figs. 7(c), (d) and (e)). Before points m1,
M and m2 coincide as shown in Fig. 7(f), there exists
a value of vref for which the corner collision and the
period doubling occur for the same value of ks . This
is the point labeled in Fig. 6 as point C = (kC

s , vC
ref).

A one-dimensional bifurcation diagram through point
C is shown in Fig. 7(d), corresponding to cross sec-
tion cs4 in Fig. 6. For vref decreasing further, the re-
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Fig. 8 Regions of existence of several objects bounded by
solid curves. Gray curve represents virtual saddle-node bifur-
cation. The labels i

f/v
s/u , i = 1..2, refer to a feasible/virtual,

stable/unstable i-periodic orbit, respectively. 2 and 2 refer to

2-periodic orbit saturated to 1 or to 0, respectively. See text for
details

gion of feasible coexistence of both 2-periodic orbits
is bounded on the left by the period doubling curve.

Points A and F

There exist also in Fig. 6 two codimension-2 points
labeled as A and F with limiting values vref = 1 and
vref = 0, respectively. There, as the fixed point is lo-
cated at the boundaries of the feasible domain, the
2-periodic orbits created at the period doubling bi-
furcation can not be feasible. Hence, for both cases
vref = 0 and vref = 1, the period doubling bifurcation
which causes a 2-periodic orbit to emerge and the cor-
ner collision bifurcation which causes this orbit to be-
come virtual occur at the same value of ks . Note that
for these values of vref all solutions will converge to a
saturated fixed point for any value of ks .

3.5 Regions of existence in parameter space

Based on the results exposed so far, we summarize in
Fig. 8 the regions of existence of all 1- and 2-periodic
orbits. Note that in this figure the saddle-node bi-
furcation curve is shown as a gray curve when this
bifurcation occurs outside the feasible interval [0,1]
and black otherwise. A dashed horizontal line is also
shown to distinguish between the saturation of the
2-periodic orbits to 1 from the saturation to 0. In the
following discussions we argue which objects exist in
the regions labeled in Fig. 8.

Under some assumptions and using the algebraic
ZAD condition, a similar but one-dimensional study
has been performed numerically in [5] for two and
higher-period orbits.
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Regions 1 and 2

In these regions only the stable fixed point is feasi-
ble. The only difference between the Regions 1 and 2
is given by the fact that in the first case there are no
2-periodic orbits, whereas in the second case there ex-
ists a stable and an unstable 2-periodic orbit created at
the saddle-node bifurcation. However, these orbits are
virtual and do not influence the dynamics in any way
(see Figs. 5(a) and 7(a)). Especially, since the unstable
virtual 2-periodic orbit and hence the basin of attrac-
tion of the stable one are located outside the feasible
domain, no saturated orbits are possible in Region 2.
Hence, in both Regions 1 and 2 all initial values are
attracted by the stable fixed point.

Region 3

This region is confined by the period doubling and
the corner collision bifurcation curves above point C.
Therefore, in this region a stable fixed point coexists
with an unstable feasible 2-periodic orbit and with a
stable virtual 2-periodic orbit. As the unstable 2-perio-
dic orbit is feasible, the basin of attraction of the vir-
tual stable 2-periodic orbit intersects the feasible re-
gion, and therefore the stable fixed point coexists in
this region with a 2-periodic orbit saturated to one (see
also Fig. 7(a)).

Regions 4 and 8

These regions are bounded on the right hand side
by the period doubling above C and by the corner
collision bifurcation curve below this point. As only
the unstable fixed point is feasible and no unstable
2-periodic orbits exist there, all orbits are attracted
to the boundaries of the feasible region by the sta-
ble virtual 2-periodic orbits. Therefore, all typical ini-
tial values in both regions converge towards saturated
2-periodic orbits. Depending on whether vref > 1

2 or
not, the orbits saturate to 1 (Region 4) or to 0 (Re-
gion 8). As stated above, for vref = 1

2 the orbits satu-
rate to both values, to 0 and to 1 (see Fig. 7(g)).

Region 5

This region is bounded on the right side by the saddle-
node bifurcation curve, and, on the left one, by the
corner collision bifurcation curve above point C and

by the period doubling bifurcation curve below. There
coexist three different objects and all of them are fea-
sible: stable and unstable 2-periodic orbits and the sta-
ble fixed point (see Figs. 7(c)–(e)). Therefore, solu-
tions using values of ks and vref located in that region
could converge to the stable fixed point or to a sta-
ble 2-periodic orbit with non-saturated duty cycles. As
stated above, no saturated orbits exist in this region be-
cause the stable 2-periodic orbit is feasible.

Regions 6 and 7

Below point C and between the period doubling and
the corner collision bifurcation curves, the fixed point
is unstable, the stable 2-periodic solutions are feasi-
ble and the unstable 2-periodic ones do not exist (see
Figs. 7(f)–(h)). Therefore, all typical orbits with para-
meters located in this region will converge to a non-
saturated 2-periodic orbit as it is the unique attractor
that exists there.

The only reason to distinguish between the Re-
gions 6 and 7 regards the properties of the stable
2-periodic orbit. For values of vref larger (smaller) than
1
2 , that is in the Region 6 (7), the stable 2-periodic or-
bit is located close to the upper (lower) boundary of
the feasible domain. This means that the upper (lower)
branch of the 2-periodic orbit collides with the bound-
ary of the feasible domain at the corner collision bifur-
cation, which leads to an orbit saturated to one (zero).

4 Numerical simulations

Let us compare the analytical results reported above
with the numerical results when simulating the system
for two different situations, for vref = 0.7 where the
system undergoes a subcritical period doubling bifur-
cation (Fig. 7(a)) and for vref = 0.3 where the period
doubling bifurcation is supercritical (Fig. 7(h)). It will
also be shown for the first case, how the dynamics is
qualitatively different when considering the algebraic
ZAD condition described in Sect. 2.3.

The results presented in this section have been ob-
tained by iterating the Poincaré map (3) using the same
initial condition for several values of ks and a fixed
value of vref. At each iteration, (7) has been solved
using a Newton–Raphson method in order to find the
value of d which satisfies the ZAD condition at the
current iteration.
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Fig. 9 Expected results for vref = 0.7

From what has been exposed in previous sections,
it is clear that, when trying to simulate the system
for vref such that the saddle node is not feasible (see
Fig. 7(a)), a 2-periodic orbit with one saturated duty
cycle should be obtained for ks located on the left hand
side of the period doubling bifurcation. It is also clear
that the fixed point should be obtained for ks located
on the right hand side of the corner collision bifurca-
tion. However, for ks between these two bifurcations
both stable objects coexist (Region 3 of Fig. 8), so the
asymptotic dynamics in this region depends on the fact
to which basin of attraction the initial duty cycle be-
longs to. As d is not a state variable but is related with
them through the ZAD condition, let us consider the
family of curves ζ(x0) formed by points (ks, d) such
that, for a certain initial condition x0, the ZAD condi-
tion is fulfilled in the first interval, that means in [0, T ],

ζ(x0) =
{(

ks, d(x0, ks)
) | (1 − γ ks, ks)

×
∫ T

0
Φ(t, x0, d) dt − vrefT = 0

}
.

This curve is shown in Fig. 9 for a certain value of x0.
Let us denote with (k̄s(x0), d̄(x0)) the point given

by the intersection of this curve with the unstable
2-periodic branch for a certain x0. As for ks > k̄s the
orbit is attracted to the fixed point and for ks < k̄s

to the 2-periodic orbit with one saturated duty cy-
cle, a jump between the fixed point and the satu-
rated 2-periodic orbit is expected to occur for ks = k̄s

when numerically investigating the system, as shown
in Fig. 9. Note that the curve ζ(x0) shown in Fig. 9
looks like a constant function. In fact it is not, but some

Fig. 10 Simulations for vref = 0.7. (a) Simulations using 106,
107 and 4 × 107 iteration steps. (b) Simulations for two differ-
ent initial conditions. In gray the expected jump and the analyt-
ical unstable orbit, in black the obtained numerical results after
4 × 107 iteration steps

calculations show that |∂d(x0, ks)/∂ks | 	 1 and hence
the function is almost constant.

Figure 10(a) shows the results of numerical simu-
lations calculated for vref = 0.7, using 106, 107 and
4 × 107 iteration steps. As one can clearly see, for the
calculation of the bifurcation diagrams a large number
of iterations is required. However, for increasing num-
ber of iterations the bifurcation diagram calculated nu-
merically gets closer to the one predicted analytically.
Consequently, we observe the critical slowing down
effect; that is, the closer ks gets to k̄s , the slower the
dynamics is. This is because an orbit using an initial
value in a small vicinity of the unstable 2-periodic or-
bit which separates the basins of two coexisting attrac-
tors, needs more iteration steps to leave this vicinity as
the vicinity gets smaller. This is the reason why practi-
cally instead of the predicted jump a smooth transition
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Fig. 11 Bifurcation diagram using the piecewise-linear approx-
imation of s(t)

from the fixed point to the saturated 2-periodic orbit
will be observed, as can be clearly seen in Fig. 10(a).
Especially the results obtained using only 106 iteration
steps are far from the expected ones.

As already indicated in Fig. 9, the value of ks where
the jump between the fixed point and the saturated
2-periodic orbit occurs, that is k̄s , depends on the used
initial condition. Figure 10(b) shows the results ob-
tained numerically using two different initial condi-
tions and confirms this result.

Let us finally emphasize that all analytical results
discussed above concern the system verifying the tran-
scendental ZAD condition exactly. As mentioned in
previous sections, when the error surface s(t) is re-
placed by a piecewise-linear function in order to ob-
tain a closed expression for the duty cycle (algebraic
ZAD condition), one obtains qualitatively different
results as the described above. Especially, using the
same parameter values and initial conditions as in
Fig. 10, we obtain for the map using (9) to compute
the duty cycle d , the results shown in Fig. 11 (see also
[4, 5]). As shown in this figure, the saddle-node bifur-
cation and the subcritical structure of the period dou-
bling bifurcation no longer exist. Instead, a supercrit-
ical period doubling bifurcation is detected. Remark-
ably, this holds for all values of vref and hence, when
using the algebraic ZAD condition, the period dou-
bling bifurcation curve will be detected on the right
hand side of the corner collision bifurcation curve in
parameter space for all values of vref.

From previous sections it is clear that when sim-
ulating the system for vref = 0.3, that means below
point D in Fig. 6, a supercritical period doubling bi-

Fig. 12 Simulations for vref = 0.3 using 106, 3 × 106 and 107

iterations

furcation will be detected. Fig. 12 confirms this result
and demonstrates again the critical slowing down ef-
fect.

5 Conclusions

We reported a procedure which provides an analyt-
ical description of the bifurcation structures occur-
ring in linear systems with a piecewise-linear non-
autonomous periodic control. The procedure was
based on the lemma about periodic orbits in these sys-
tems recently given in [10]. We applied this procedure
to the fixed points and 2-periodic orbits in a buck con-
verter controlled by the ZAD strategy.

It was demonstrated that depending on the value of
the parameter vref, the period doubling bifurcation in
this system may be both subcritical and supercritical.
Considering feasible and virtual orbits we showed that
the investigated system undergoes also a saddle-node
bifurcation. For many parameter values the 2-periodic
orbits emerging at this bifurcation are virtual and
hence will be not observed. However, we detected
the codimension-2 bifurcation point where the saddle-
node bifurcation becomes feasible. This allowed us to
detect a region in the parameter space where a stable
fixed point coexists with non-saturated 2-periodic or-
bits. We also showed that the transition between the
subcritical and the supercritical period doubling bi-
furcations occurs at the codimension-2 point (not re-
ported until now) where additionally a saddle-node bi-
furcation is destroyed.

We presented a unified description of all codimen-
sion-2 bifurcation points involving fixed points and
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2-periodic orbits. This allowed us to determine the re-
gions of existence of all one- and two-periodic objects,
both stable and unstable, saturated and non-saturated.

The results obtained analytically were confirmed
using numerical simulations. It turned out that the be-
havior of the investigated system is strongly influenced
by the critical slowing down effect. Additionally, we
compared our results with the results reported in [4],
where a piecewise-linear surface is used to perform
the ZAD condition and compute the duty cycle. We
showed numerically that, in that case, the period dou-
bling bifurcation is supercritical for all parameter val-
ues. Consequently, both transcendental and algebraic
ZAD conditions lead to significant different bifurca-
tion structures, mainly given by different relative posi-
tion of the bifurcation curves.
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