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Abstract In this work we describe the bifurcation scenario found in a general first order
system when a relay based proportional control (sliding-mode control) is considered. Based
on the results given in the literature, we show the occurrence of a big bang bifurcation causing
the existence of an infinite number of periodic orbits near a co-dimension two bifurcation
point. We also extend in a natural way the applied theoretical result for second order systems
involving 2D piecewise-defined maps.

Keywords Big bang bifurcations · Two-dimensional piecewise-defined maps ·
Period adding · Sliding-mode control · Relays

Introduction

There exist many methods in order to force a system to exhibit a certain desired behaviour.
If its output is required to be near a certain value, one common strategy consists on imple-
menting a control system such that two different actions are applied depending on the sign of
a certain switching function which depends on the actual state and its derivatives. In general,
this leads to a non-smooth system which, among other phenomena can exhibit sliding.

As, in practice, the states are sampled at particular values of time, one considers a dis-
cretization of such a construction through a zero order holder, keeping the sampled value
constant until the next sampling. Instead of a differential equation, the system is then usually
modeled by a map, whose dynamics may differ completely from the time continuous system
where a “continuous sampling” of the states (infinite sampling frequency) is assumed. This
especially occurs when the states are close to the switching manifold, as this map does not
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coincide with the stroboscopic Poincaré map of the time-continuous system. In particular,
new bifurcation phenomena may be introduced.

Because of the nowadays hegemony of digital implementations, this has become a rele-
vant topic in the control literature. In [19,10,18,5,11] the discretization effects of a sliding
mode controller in a planar system is studied. Specifically, the discontinuous control results
from the addition of the equivalent control plus a sign function, properly weighted. Then,
a zero-order holder device is applied. As it is proven in [11], the resulting dynamics show
an infinite number of periodic orbits with arbitrarily large periods near a certain point in a
2D space. Similar phenomenon were also shown in [13] for 1D systems derived from power
converters.

Such points in parameter space assemble the so-called big bang bifurcations, first intro-
duced in [2] when simulating a 1D piecewise-linear system, better understood and generalized
later in [1]. Unfortunately, the theory derived so far only considers 1D maps and, hence, it
can’t be applied to the above mentioned planar systems in sliding-mode control.

It is worth mentioning here that, when controllers are implemented through switches, as
in the case of power electronics, the resulting sliding-mode control actions reduce to the dis-
continuous term; i.e. εsign(σ ). Then, the digitize dynamics matches perfectly with the maps
that yield to big bang bifurcations. On the contrary, when the continuous term (the equivalent
control) is included, the derived map is not longer contractive, which is highly required in
the theoretical results obtained so far.

In this work, we use recent results for big bang bifurcations to explain the behaviour of a
class of digitized sliding mode controlled first order systems. Specifically, in terms of [2], a
big bang bifurcation of the period adding type is shown to happen in that systems when the
on-off control is digitized. Moreover, big bang bifurcations are shown to happen in on-off
sliding mode controlled planar systems. Since the theory is not complete in this case, suffi-
cient conditions for such a bifurcation to occur in 2D piecewise maps are conjectured and
corroborated by simulation.

A System With a Relay Based Control

System Description

Let us consider a nth-order system given by its Laplace transform

Gs(s) = b

U (s)
,

where U (s) is a polynomial of the form

U (s) = sn + an−1sn−1 + . . . + a0, (1)

which we assume to have only negative real roots.
Equivalently, one can also consider that the system is modeled by the differential equation

yn) + an−1 yn−1) + . . . + a0 y = bu,

where yi) = di y/dti and u is the input of the system.
Let us suppose that we wish to control the system and make its output, y, close to a certain

desired value yc. Although there exist many ways to achieve this, we consider the closed
loop control scheme shown in Fig. 1.

On one hand, a certain control law is implemented by the block Gc(s), which is assumed
to be of the form
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Fig. 1 A linear control system by a relay

Gc(s) = 1 + c1s + . . . + cn−1sn−1,

with cn−1 �= 0. This is to let the system have relative degree 1 and allow sliding motion on
σ (see below).

Its output is then sent to a relay of gain k, hence providing a sliding-mode control with a
sliding surface (also called switching surface) given by the controller Gc,

σ := y − yc + c1(y1) − y1)
c ) + . . . + cn−1(yn−1) − yn−1)

c ) = 0. (2)

In this work we consider yc ∈ R constant, and thus yi)
c = 0 for i ≥ 1.

Depending on the sign of the signal given by the controller Gc, the relay outputs the value
k or −k, which yield sliding motions on σ provided that the sign and the absolute value of k
are properly chosen.

Finally, the control output is digitized through a zero-order holder device, as in a real
implementation. This is represented in Fig. 1 by a switch that samples the output of the relay
at time-multiples of the sampling-period T and a zero order holder, which keeps the sampled
value constant until the next sampling. Close to the sliding surface (2), the dynamics of the
discretized system differs from the time continuous one, although they tend to be the same
as T → 0. It is our goal to study the dynamics of the discretized system.

After performing a proper change of variables to decrease the order of the system by
increasing its dimension, yi = yi), the closed loop dynamics can be written as

˙̄y = Aȳ + b̄u (3)

with ȳ = (y0, . . . , yn−1)
T ∈ R

n and

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 0
...

...
. . .

0 0 . . . 0 1 0
−a0 −a1 . . . −an−2 −an−1

⎞
⎟⎟⎟⎟⎟⎠

, b̄ =

⎛
⎜⎜⎜⎝

0
...

0
b

⎞
⎟⎟⎟⎠ .

for t ∈ [iT, (i + 1)T ), the input u is a constant equal to

u =
{

− k if σ(ȳ) < 0

k if σ(ȳ) > 0
(4)

where σ is the sliding surface given by the controller Gc(s) in Eq. (2).
Sliding modes occur if the vector fields F± = A x ± b k obtained by replacing u = ±k,

point both to the surface σ . Since F± are smooth everywhere, this can be checked through

(L F+σ) (L F−σ) < 0. (5)

Let us define ueq =− (∇σ)Aȳ
cn−1b , then the previous inequality meets on the subset of σ defined by

− |k| < ueq < |k| (6)
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(see [17] for details). In turn, this result can be read as for k properly selected (both in sign
and in absolute value), there is sliding motion on σ .

Equivalently, the dynamics of the system are given by the discrete model

ȳi+1 = P(ȳi ),

where Pl (resp. Pr ) is the piecewise defined stroboscopic map associated with F+, (resp.
F−) which is linear and can be explicitly integrated. We obtain

P(ȳ) =
{

Pl(ȳ) := ρ̄ ȳ + μ̄� if σ(ȳ) < 0

Pr (ȳ) := ρ̄ ȳ + μ̄r if σ(ȳ) > 0,
(7)

with

ρ̄ = eAT , μ̄r = k(ρ̄ − I d)(A−1b̄), μ̄� = −k(ρ̄ − I d)(A−1b̄).

General system dynamics

Each branch of the map (9), Pr and P�, has a fixed point

ȳ∗
r = −(ρ̄ − I d)−1μ̄r , ȳ∗

� = −(ρ̄ − I d)−1μ̄�, (8)

which may be feasible or virtual depending on whether it belongs to the domain of their
respective map or not.

Regarding the possible dynamics, we distinguish between three situations.
If both fixed points are feasible (σ(ȳ∗

r ) > 0 and σ(ȳ∗
� ) < 0) they also become fixed points

of the map (9). Hence, if all eigenvalues of ρ̄ have modulus less than 1, both are locally
asymptotically stable. If only one of both fixed points is feasible (σ(ȳ∗

r ) < 0 and σ(ȳ∗
� ) < 0

or vice-versa) and the same condition for ρ̄ holds, then it becomes the unique fixed point
of the map (9). For the same reason, all trajectories tend towards it, and now its domain of
attraction becomes R

n .
Note that, in these two previous cases, the control specification is not fulfilled as σ is not

flow invariant by the piecewise vector field F .
The third situation occurs when both fixed points are virtual (σ(ȳ∗

r ) < 0 and σ(ȳ∗
� ) > 0).

If all the eigenvalues of ρ̄ have modulus <1 and are real (hence positive) then there are sliding
motions in the original continuous-time system. In this case, and at least for linear and planar
systems, the dynamics of the digitized map consists on periodic orbits which may possess
arbitrarily large periods and whose iterates jump on both sides of the sliding surface σ = 0.
Properly tunning the parameters, the amplitude of all these orbits can be chosen arbitrarily
small. Additionally, the design conditions are satisfied in this case, as the asymptotic dynam-
ics are close to σ = 0. A precise description of all the possible periodic orbits is the main
scope of this work, and results from the existence of a bing bang bifurcation. This is discussed
in the next section for first and second order systems.

Big Bang Bifurcation of the Period Adding Type

The 1D Case

Let us first study the 1D case (n = 1 and Gc(s) = 1) when (3) is a scalar equation, which
was reported in [4]. After applying the change of variable z = y − yc to the original system,
the sliding surface is given by z = 0, and the map (7) becomes
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P̃(z) =
{

P̃�(z) := ρz + μ� if z < 0

P̃r (z) := ρz + μr if z > 0
(9)

with

ρ = ea0T < 1, μr = (ρ − 1)

(
yc − bk

a0

)
∈ R and μ� = (ρ − 1)

(
yc + bk

a0

)
∈ R, (10)

and the fixed points

z∗
r = − μr

ρ − 1
∈ R, z∗

� = − μ�

ρ − 1
∈ R. (11)

In order to describe the dynamics of the map (9) when both fixed points of its branches are
virtual, μr < 0 and μ� > 0, we first focus on the bifurcations that occur in their transition
from virtual to feasible or vice versa. To this end, we first restrict ourselves to a suitable 2D
parameter space, in terms of (11), where the position of z∗

r and z∗
� with respect to the boundary

z = 0 can be independently represented. More precisely, we are interested on the existence
of two curves such that a variation of the parameters along them, affects only the position of
one fixed point. We proceed arguing with the parameters ρ, μr and μ� in (9), although we
will later translate our discussion to the original parameters a, T , b, k and yc.

We remark that we benefit from the linearity of the system in order to perform explicit
calculations, although the same argumentations below hold also for a non-linear system.

As these transitions occur when one of the fixed points collides with the boundary z = 0,
these are given by border collision bifurcations. Although the parameter ρ influences on the
position of both fixed points, as we are restricted to 0 < ρ < 1, its variation does not lead to
such type of bifurcations. Hence, we focus on the μ� × μr parameter space.

There, the vertical and horizontal axis represent border collision bifurcation curves that the
fixed points, μ∗

� and μ∗
r , undergo. Of particular interest is the origin of this parameter space,

which is a co-dimension two bifurcation point, as both fixed points simultaneously collide
with the boundary. Depending on the sign of the eigenvalues associated with the colliding
fixed points, such a point may become a big bang bifurcation point, where an infinite number
of (border collision) bifurcation curves emanate from. If this occurs, these bifurcation curves
separate existence regions of periodic orbits located at the region in the parameter space
μ� × μr where both fixed points are virtual.

This basically depends on the sign of the eigenvalues of the colliding fixed points, which,
for the 1D case, are the slopes of the map near the discontinuity. The possible bifurcation sce-
narios for a 1D contracting linear map with one discontinuity were described in [2] through
numerical observations, and were generalized in [1] (see also the bibliography reported there).
With independence of the particular nature of the map, it was proven there that when the
sign of the eigenvalues associated with the colliding fixed points are different (also known as
increasing-decreasing/decreasing-increasing case), then a big bang bifurcation of the period
incrementing type occurs. It was also suggested that, when both are positive (increasing-
increasing case), a period adding big bang bifurcation (described below) occurs. Although
this result was conjectured, the resulting bifurcation scenario has been highly reported in the
literature [14,3,6,7,9,8,12,16,15], and hence it is a well accepted result.

In our case, as the eigenvalues associated with the colliding fixed points are positive,
0 < ρ < 1, a big bang of the period adding type occurs at the origin of the parameter space
μ� × μr .

This implies that the region located near the origin of the parameter space where both fixed
points are virtual is fully covered by an infinite number of regions where a unique periodic
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orbit exists. All these regions collapse at the origin and, hence, all the possible periodic orbits
exist for any arbitrarily small neighbourhood containing the origin of the parameter space.

To understand how these periodic orbits are organized, let us introduce the following
symbolic codification (see [2] for a more extended explanation). Let (z1, . . . , zn) be the
sequence of points forming a periodic orbit of period n, then we consider the symbolic
sequence obtained by replacing each of these points by L if zi < 0 and R if zi > 0. Then, the
symbolic sequences of the periodic orbits are obtained by a gluing process between periodic
orbits. More precisely, in-between the regions of existence of two periodic orbits of periods
n and m with symbolic sequences α and β one finds a region where the (n + m)-periodic
orbit with symbolic sequence αβ (their concatenation) exists. As the symbolic sequences are
glued, the periods are added, and hence this scenario was referred in [2] as period adding.
This process starts with the fixed points z∗

� → L and z∗
r → R, which are “glued” to form the

2-periodic orbit LR, and is repeated add infinitum. Thus, in any arbitrarily small neighbour-
hood of the origin of the parameter space one can find an infinite number of periodic orbits
with arbitrarily large periods.

Let us adapt the situation described before in terms of he parameters involved in the
original system (3–4) for n = 1. Let us first focus on their influence on the dynamics of the
map (9).

As it comes from the relations shown in (10), the most relevant parameters regarding the
influence on the location of the fixed points z∗

� and z∗
r are yc, k and b. We proceed arguing with

the pair (yc, k), as they are the parameters to be tunned and, hence, are of more interest from
the control design point of view. However, the following discussion can be easily extended
to the pair (yc, b).

In this parameter space, the lines

k = −a0/byc and k = a0/byc (12)

represent border collision bifurcation curves for z∗
� and z∗

r , respectively. Hence, as both are
attracting with positive associated eigenvalues (0 < ρ < 1), a big bang bifurcation of the
period adding type occurs at the intersection of these lines, (yc, k) = (0, 0), where two border
collision bifurcation simultaneously occur.

Note that, although the parameter a0 also influences on the position of the fixed points, it
comes that a big bang bifurcation may occur for a0 = 0. However, for such a value the fixed
points are no longer attractive and, hence, the results obtained so far on big bang bifurcation
can not be applied.

To demonstrate this, we show in Fig. 2a the bifurcation scenario in the yc × k parameter
space, where one can observe the infinite number of bifurcation curves emanating from the
origin. The adding scenario is presented in Fig. 2b, where the periods of the periodic orbits
found along the curve marked in Fig. 2a are shown.

It comes from the adding procedure described above that all the periodic orbits step at
both sides of the boundary z = 0. Hence, each of these n-periodic orbits correspond in
the original 1D continuous model (3–4) to a continuous nT -periodic orbit which oscillates
around y = yc. In addition, the amplitude of all these orbits tend to zero as the parameters
yc and k get close to the big bang bifurcation.

A Second Order System

We now extend the results shown in the previous section to a second order system.
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(a) (b)

Fig. 2 a Big bang bifurcation in the (yc, k) parameter space for a0 = −2, b = 1 and T = 0.1. The fixed points
z∗
i are labeled in the regions where they are feasible, and, as dashed lines, the border collision bifurcation

curves where they become virtual are shown. In b we show the periods p of the periodic orbits found along
the pointed curve in (a), which is parametrized by the angle θ

In this case, we have

A =
(

0 1
−a0 −a1

)
, b̄ =

(
0
b

)
, σ = y1 − yc + c1 y2,

where a0 and a1 are such that the eigenvalues of the matrix A have real negative eigenvalues.
For commodity, in order to easily proceed as before and argue with the relative position

of the fixed points z̄∗
� and z̄∗

r with respect the boundary, we introduce new coordinates z̄ =
(z1, z2) given by

z̄ =
(

1 c1

a0c1 − a1 1

)

︸ ︷︷ ︸
φ

−
(

yc

0

)
.

Note that one can always perform such a change of variables as long as the vector (1, c1)
T

is not an eigenvector of the matrix A.
In these new variables, the map (7) becomes

P̃(z̄) =
{

P̃�(z̄) :=ρ̃ z̄ + μ̄� if z1 < 0

P̃r (z̄) :=ρ̃ z̄ + μ̄r z1 > 0,
(13)

where

ρ̃ = eÃT , Ã =
(−a1 −1

a0 0

)

μ̄� = (ρ̃ − I d) Ã−1
(

−φ

(
0

kb

)
+ Ã

(
yc

0

))

μ̄r = (ρ̃ − I d) Ã−1
(

φ

(
0

kb

)
+ Ã

(
yc

0

))
.

The main advantage of this change of variables consists on the fact that the boundary becomes
z1 = 0, independently of the parameters, while the matrix ρ̃ remains only dependent on the
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parameters ai . Hence, the relevant parameters for the study of the border collision bifurcations
only influence the position of the fixed points, which become

z̄∗
� =

(
−yc − kb

a0− kb
a0

(a0c1 − a1)

)

z̄∗
r =

(
−yc + kb

a0
kb
a0

(a0c1 − a1)

)

The border collision bifurcation curves that the fixed points undergo become the same expres-
sions as in the 1D case, given in (12). Hence, arguing again in the yc ×k parameter space, for
yc = k = 0 both fixed points simultaneously collide with the boundary z1 = 0 and become
virtual.

We now conjecture an extension to 2D maps of the result used above for the 1D maps.
In the considered situation regarding the simultaneously collision of attracting fixed points
with the boundary, there exist a big bang bifurcation of the period adding type if there exist
an open neighbourhood U such that, at the simultaneous collision,

z̄∗
�, z̄∗

r ∈ U
P̃i (U ∩ Xi ) ⊂ U ∩ Xi , i ∈ {�, r} ,

where X� and Xr are the left and right part of R
2 separated by the boundary.

In our case, these conditions coincide with the sliding conditions given in (5). This is
because, at the big bang bifurcation point, k = yc = 0, both fixed points collide with origin
of the state space, z̄∗

i (0, 0)T . Hence, near the bifurcation point, |ueq | << 1 and thus condition
(6) is fulfilled if

c1 �= 0.

Note that, although the map (13) is continuous at z̄ = (0, 0)T at the big bang bifurcation
point because both fixed points coincide at z̄ = (0, 0)T , continuity is not assumed in the
conditions mentioned above.

The simulations shown in Fig. 3 show how a big bang bifurcation of the period adding
type occurs for yc = k = 0 if c1 �= 0.

(a) (b)

Fig. 3 Big bang bifurcation in the (yc, k) parameter space for a0 = −2, a1 = −5, b = 1, c1 = 1.5 and
T = 0.1. In a we show the border collision bifurcation curves separating existence regions of periodic orbits.
In b the periods of the periodic orbits found along the pointed curve in (a) parametrized by the angle θ
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Conclusions

A co-dimension-2 big bang bifurcation in a 2D parameter space relevant from the control
design point of view has been presented in a class of first and second order systems with a
relay. While its occurrence in the 1D case is based on results given in the literature, sufficient
conditions have been suggested for an extension to the 2D case.
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