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Abstract. This survey article is concerned with the study of bifurcations of discontinuous piecewise-
smooth maps, with a special focus on the one-dimensional case. We review the literature
on circle maps and quasi-contractions and provide paths through this literature to prove
sufficient conditions for the occurrence of two types of bifurcation scenarios involving rich
dynamics. The first scenario consists of the appearance of periodic orbits whose symbolic
sequences and “rotation” numbers follow a Farey tree structure; the periods of the periodic
orbits are given by consecutive addition. This is called the period adding bifurcation, and
the proof of its existence relies on results for maps on the circle. In the second scenario,
symbolic sequences are obtained by consecutive attachment of a given symbolic block, and
the periods of periodic orbits are incremented by a constant term. This is called the period
incrementing bifurcation, and its proof relies on results for maps on the interval. We also
discuss the expanding cases, as some of the partial results found in the literature also
hold when these maps lose contractiveness. The higher-dimensional case is also discussed
by means of quasi-contractions. We provide applied examples in control theory, power
electronics, and neuroscience, where these results can be used to obtain precise descriptions
of their dynamics.
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I. Introduction. Piecewise-smooth (piecewise-defined or nonsmooth) systems are
nonregular or discontinuous systems induced by dynamics associated with sharp
changes in position, velocity, or other magnitudes undergoing a jump in value. This
type of system provides more natural and simple models in many applications, such
as switching systems in power electronics [31, 135, 53, 16], sliding-mode techniques
in control theory [132, 43, 52, 47], hybrid systems with resets in neuroscience [35, 83,
103, 74], or impact systems in mechanics [79, 71, 72]. Using nonsmooth modeling can
reduce the dimension of the system, but may result in more complicated dynamics.
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As a consequence of its broad field of application, the interest in such systems has
grown considerably in the last decade (see [101] for a recent general survey). In par-
ticular, piecewise-smooth maps have captured the attention of many researchers, who
have studied them from very different perspectives. One of the most reported dynami-
cal aspects is the different bifurcation scenarios that they may exhibit, which turn out
to be extraordinarily rich. Seduced by their graphical beauty and mainly supported
by computations, many authors have recurrently observed and reported these bifurca-
tion phenomena. However, although they resemble many well-known results on circle
maps, they have been considered to be new and exclusive to piecewise-smooth maps.

In this review article we show that many of the well-known results for circle
maps developed in the 1980s and early 1990s can be used to obtain rigorous proofs
of general results that can be applied systematically to one-dimensional piecewise-
smooth contracting maps. Moreover, we also show how many of these results scattered
in the literature are valid not only for piecewise-smooth expanding maps, but also for
higher-dimensional ones.

In the general setting for the one-dimensional case we consider a piecewise-smooth
map undergoing a discontinuity at z = 0, and consider as parameters the two lateral
images at this point. To our knowledge, such a map was first studied by Leonov [95],
and was later obtained as an approximation of a Poincaré map of smooth flow near a
homoclinic bifurcation of the figure eight and butterfly types [122, 80] (see sections 2.2
and 7.1.1 for more references).

Depending on the signs and magnitude of the slopes of the map on each side of
the discontinuity, the bifurcation scenario in this two-dimensional parameter space
may be very different. These signs are determined by the number of twists exhibited
by the invariant manifolds (their orientability) involved in the homoclinic bifurcation
[66, 80]. When the map is contracting on both sides of the discontinuity and both
slopes have different sign, the so-called period incrementing scenario occurs. This
bifurcation was reported in [80], and the details of the proof corresponding to this
case were given in [18]. However, if both slopes are positive, then the so-called period
adding scenario occurs.

Although this latter scenario has been widely reported (see section 2.2), corre-
sponding proof is scattered throughout the literature in the form of partial results
using different approaches. In the late 1980s, Gambaudo et al. [61, 60, 63] provided
strong rigorous results in this direction by means of the mazimin approach (see sec-
tion 6). They provide very precise information on the symbolic sequences. Moreover,
they were stated for maps in metric spaces of arbitrary dimension, which permits us
to adapt them to provide results for piecewise-smooth maps in R™. However, they do
not allow one to distinguish straightforwardly between the two bifurcation scenarios
mentioned above.

In order to prove the bifurcation scenario for the increasing-increasing case, we
propose to reduce the piecewise-smooth map to a discontinuous circle map. We then
assemble and adapt many well-known results from rotation theory to the discontinuous
case which provides the straightest path to proving the period adding bifurcation
scenario. The main advantage over the maximin approach is the fact that this method
does not require the map to be contracting, but relies only on its invertibility, and
hence requires weaker assumptions. However, the maximin approach, although it
requires a lot of contractiveness, obtains results that are valid in higher dimensions.

Other approaches suggest proceeding with renormalization arguments [62, 113,
68, 134, 80, 81] to prove the occurrence of the period adding bifurcation scenario.
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Beyond their relation to homoclinic bifurcations for flows, such types of bifurca-
tion scenarios have been observed in more applied contexts modeled by both one- and
n-dimensional piecewise-smooth maps. Examples of such applications where these
bifurcation scenarios appear are power electronics [45, 29, 114, 67, 138, 7, 85, 136],
control theory [46, 58, 51, 135, 137, 50, 51], economics [128], and neuroscience [57, 74,
84, 89, 103, 121, 124, 117, 126, 127, 125].

Typically, these bifurcation scenarios are observed numerically in two-dimensional
parameter space near codimension-two bifurcation points. Such points involve the
emergence of an infinite number of bifurcation curves and were called big bang bifur-
cations by the nonsmooth community [22].

In this survey we also provide an illustration of how rotation theory can be applied
to provide a rigorous basis to analyzing bifurcations of piecewise-smooth maps in four
different applied contexts: nonsmooth dynamics, control theory, mathematical neu-
roscience, and power electronics. We first study (section 7.1.1) bifurcation scenarios
around codimension-two bifurcation points given by the collision of two periodic or-
bits with the boundary (big bang bifurcations). In the second example (section 7.1.2)
we consider a nonlinear system subject to sliding-mode control in order to stabilize
it around a desired “equilibrium” point. In the third example (section 7.1.3), we
consider a periodically forced integrate-and-fire model, a hybrid system widely used
in neuroscience. For these two last examples we show how the period adding bifurca-
tion scenario explains the dynamics of the systems and how the symbolic dynamics
help to obtain relevant properties from the applied point of view. We finally provide
two more examples leading to period—adding-like bifurcations for planar piecewise-
smooth maps: a higher order system subject to sliding-mode control with relays (sec-
tion 7.2.1) and a DC-DC boost converter controlled with the so-called ZAD strategy
(section 7.2.2).

This work is organized as follows. In section 2 we provide basic definitions and a
detailed statement of the results for the one-dimensional case. In section 3 we review
and extend results for circle maps to provide a proof of the period adding bifurcation
scenario (increasing-increasing or orientation preserving case). A detailed summary
of the proof is given in section 3.2. In section 4 we revisit the proof provided in [18] for
the period incrementing bifurcation scenario (increasing-decreasing or nonorientable
case). In section 5 we emphasize the extent to which the results of section 3 are also
valid in the presence of expansiveness. In section 6 we review the maximin approach
and show how it can be applied to obtain results for piecewise-smooth maps in R".
Section 7 is dedicated to illustrating how these results can be used in different applied
fields using five examples. Finally, we conclude in section 8 with some discussion and
proposals for future directions.

2. Basic Definitions and Overview of Results.

2.1. System Definition and Properties. Let us consider a piecewise-smooth
map

(2.1) fz) = {MmLfc(x) if z <0,

—pr + fr(z) ifz >0,

with x € R and f., fr smooth functions satisfying
h1. f£(0) = fr(0) =0,
h.2. 0 < (fe(x)) <1,z € (—0,0),
h.3. 0 < |(fr(x))| <1,z € (0,00).
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We wish to describe the possible bifurcation structures obtained when parameters p,
and pg are varied.

REMARK 1. The global contractiveness of the maps fr and fr is assumed for
simplicity. This allows us to state results on bifurcations for arbitrarily large values
of pue and ur. However, if contractiveness holds only locally at the origin, then all
the results presented here are still valid for values of these parameters close enough to
the origin. Their validity when contractiveness s lost is discussed in section 5.

REMARK 2. For convenience, we do not define at this point the map f at x = 0.
Roughly speaking, the only difference made by the selection of the value of f at x =0
concerns the existence or not of fized points and periodic orbits at their bifurcation
values. We remark that one cannot consider the value of f at x =0 only by choosing
one lateral image, but also can consider either both images or neither of them. We
will focus on this question whenever it becomes relevant.

Due to condition h.1, the map (2.1) is discontinuous at = 0 if pz # pr. As we
will show, this discontinuity introduces exclusive dynamical phenomena which are not
possible in smooth (C!) one-dimensional systems. As discussed in the introduction,
one observes similar phenomena (the bifurcation scenarios described below) in smooth
flows of dimension three near homoclinic bifurcations. They are also observed in
smooth maps, when restricted to the circle instead of R.

This discontinuity represents a boundary in the state space abruptly separating
two different dynamics: those given by the maps fr and fr. These dynamics will
depend strongly on the sign of ff (z) on (0, 00), leading to completely different families
of periodic orbits. Note that the cases when f(z) and fr(z) have different slopes in
their respective domains are conjugate through the symmetry x «— —x. Moreover,
as will be shown below, when both f(z) and fr(z) are decreasing functions in their
respective domains, the possible dynamics will be easy. Therefore, we can restrict our
attention to the case that f-(z) is an increasing function in (—o0, 0), as stated in h.2.

One of the differences between the families of periodic orbits that one can find
depending on the sign of ff () in (0,00) can be given by the sequence of steps that
periodic orbits perform at each side of the boundary = 0. Therefore, we introduce
the symbolic dynamics given by the following symbolic encoding: Given a point x € R,
we associate to its trajectory by f, (z, f(z), f2(z),...), a symbolic sequence given by

(2.2) I1(2) = (a(),a (f(@)) ,a (f2(@)),...) |

where

23) (o) = {R if 7> 0,

L ifxz<0.

Since a(z) provides a symbol of length one (£ or R), one can omit the commas
separating the symbols in (2.2) without introducing any imprecision.

We call this sequence the itinerary of x by f or the symbolic sequence associated
with the trajectory of z by f.

Let us now consider the shift operator acting on symbolic sequences,

(2.4) o (X1X2Xg ) = (XaX3 -+ ),

where x; € {£,R}.



230 ALBERT GRANADOS, LLUIS ALSEDA, AND MACIE] KRUPA

Clearly, the shift operator satisfies
(2.5) o (Iy(z)) = I (f (2))-

Of special interest will be the symbolic sequences associated with periodic orbits.
In this case, the symbolic sequences will be also periodic and we will represent them
by the repetition of the generating symbolic block. For example, let (x1,x2) be a
periodic orbit such that

f(z1) = 2,
f(z2) = 1,
and assume x1 < 0 and zo > 0. Then the symbolic sequences associated with x; and
To are
If(z1) = (LRLR -+ ) = (LR)*,
It(x2) = (RLRL---) == (RL)™,
where oo indicates infinite repetition.
Due to property (2.5), the shift operator acts on the generating blocks as a cyclic
permutation of offset 1, as it moves the first symbol to the last position. More

precisely, if (z1,...,2z,), ; € R, is a periodic orbit of f and (x1 - - - x,)%°, x; € {L, R},
is the symbolic sequence associated with the periodic trajectory of x1, then

o(If(x1)) = (x2x3 - - Xpx1)™

Hence, a periodic orbit of length n can be represented by n different symbolic se-
quences obtained by cyclic permutations, one from each other.

DEFINITION 3. Symbolic sequences can be ordered by lexicographical order induced
by L <R. That is,
(XlXZ"') < (leQ...)
if and only if x1y = L andy1 =R or x;1 =y1 and there exists some j > 1 such that
x; =y; for alli < j,

XjZE,
yj:R.

EXAMPLE 4. The sequences (X1,Xz,X3,%4)>° = (L2, R, L)* and (y1,y2,¥3,y4)>®
= (L2, R?)*> satisfy
(L% R, L)>® < (L2 R?)™,
asxg =L andys =R and x; =y; for 1 <i<3.

DEFINITION 5. Given a periodic symbolic sequence x = (X1 ---Xq)°°, we say that
it 1s minimal if

— mi k
*=omie, 7 O

and similarly for a mazimal symbolic sequence.
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Note that the min and max operators act on sequences following the order given
in Definition 3, and hence its output is also a sequence.

EXAMPLE 6. The sequence (£2,R)> is minimal, whereas (R, L£?)> is mazimal,
as we find

(L2, R)>™ =min {(L* R)™, (L, R,L)>®,(R,L*)>*},
(R, £*)>™ =max {(L*, R)>, (L, R, L), (R,L>)>*}.

DEFINITION 7. We say that a periodic orbit of length n is an (X1 - - - Xy, )-periodic
orbit, x; € {L, R}, if there exists some point of this periodic orbit, x; € R, such that

Ip(x;) = (%1 %)

EXAMPLE 8. The periodic orbit (—1,—0.5,1, —2), satisfying

f(=1)=-05, f(=05)=1, f(1)=-2, f(-2)=-1,
is an LPRL-, LRL?-, RL3-, and L3R-periodic orbit, since
I1(~1) = (L*RL)™
I;(—0.5) = (LRL?)™®
Iy(1) = (RL?)>
I;(-2) = (L*R)™
Usually, in order to represent the symbolic sequence of a periodic orbit we choose
its minimal representative. For example, assume (x1,...,x5) is a 5-periodic orbit such
that Iy(z1) = (CRLLR)>®. Then we say that (z1,...,z5) is an L*RLR-periodic orbit
or a periodic orbit of type L2RLR, where the superindex 2 means that there are two
consecutive symbols L.
Given a periodic orbit, besides its period, one important characteristic associated
with its symbolic sequence is the number of symbols R and £ and how they are

distributed along the sequence. The latter will be explained in detail below. For the
former we need the following definition.

DEFINITION 9. We call W), , the set of periodic symbolic sequences generated by
a symbolic block of length q containing p symbols R:

Wp.q = {y e{L, R\ |y =x™, x € {£,R}, and x contains p symbols R} .
EXAMPLE 10. The sets W 7 and W3 7 become
W = {(£L°,R*)™, (L, R, L)>}
and

Ws 7= {(LR?)>®, (L3 R* L,R)>®, (LR, L,R,L,R)}.
Now let W be the set of all periodic symbolic sequences,
W= |J W
(p,q)=1

where (-, -) refers to the greatest common divisor.
We next define the n-number associated with a periodic symbolic sequence.
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DEFINITION 11. Let x = (x1---%x4) € {L,R}? be a symbolic sequence, and let p
be the number of symbols R contained in x. We then define the n-number of x as

n: W — Q,

Xx® — B
q

(2.6)

ifx e Wpgq, (p,q) =1.

EXAMPLE 12. The n-numbers of the sequences (R®,L£)> and (L2, R,L,R)> be-
come

n((R?,£)%) =

]

and

n ((527 R, ‘Cﬂ R)Oo) = g

As is detailed below (see section 3.1, Remark 18), under certain conditions, the
piecewise-smooth map (2.1) becomes a circle map with rotation number the n-number.
Hence, the n-number as defined above is frequently referred to as rotation number in
the context of piecewise-smooth maps, even when those conditions are not satisfied
(see, for example, [63, 60]).

We now focus on the question, for a map f of type (2.1) satisfying h.1-h.3, of
what are the possible periodic orbits, their symbolic sequences, and their bifurcations
in the parameter space given by the offsets, o X pur. To this end, we first note that if
e, pr < 0, as the maps fr and fr are contracting, then f possesses two attracting
coexisting £ and R fixed points zx < 0 and g > 0:

fe(oe) = zc,
fr(rR) = 2.

The domains of attraction are separated by the boundary = = 0. Indeed, if both
fr and fr are increasing maps, then these domains become (—o00,0) and (0, 0),
respectively. Note that, although « = 0 is not an invariant point (an equilibrium), it
acts as a separatrix between these domains of attraction.

If one of these two parameters vanishes and becomes positive (for example, ),
the fixed point z, collides with the boundary x = 0 and undergoes a border collision
bifurcation. Depending on how the map f given in (2.1) is defined at x = 0, at
the moment of the bifurcation this fixed point may or may not still exist. Just after
this bifurcation, x, no longer exists, and the fixed point xx becomes the unique
global attractor. As will be discussed below, this fixed point may coexist with a
two-periodic orbit. A similar situation occurs when the parameter pugr crosses 0,
replacing z, by zr in the previous argument. Hence, the origin of this parameter
space consists of a codimension-two bifurcation point. But then the question arises:
what exists when both parameters are positive and both fixed points disappear in
border collision bifurcations? The answer to this question (summarized in sections 2.2
and 2.3) depends on the signs of the slopes of the maps f, and fr for x < 0 and > 0,
respectively. Recalling that the increasing-decreasing and decreasing-increasing cases
are conjugate, we will only distinguish between two cases: increasing-increasing and
increasing-decreasing. These are also typically referred to as orientation preserving
and nonorientable cases.
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Fig. 2.1 Bifurcation curves on the two-dimensional parameter space pe X pr for a linear increasing-
increasing piecewise-smooth map. The periods of the periodic orbits found along the curve
Y(A) are shown in Figure 2.2(a).

As will be argued in section 2.4, the decreasing-decreasing case is straightforward
under the assumption of contractiveness.

2.2. Overview of the Orientation Preserving Case: Period Adding. The bi-
furcation scenario when both f, and fz are increasing is shown in Figures 2.1 and 2.2.
As shown in Figure 2.1, there exist an infinite number of bifurcation curves emerging
from the origin of the parameter space i, X pur. Note that these curves are straight
lines due to the fact that the map chosen for the simulations was linear. As will be
shown in Theorem 13, this is not a particularity of the chosen system, and similar non-
linear curves can be obtained otherwise. Moreover, due to this linearity, these curves
extend to infinity due to the fact that the maps chosen are globally contracting. If
contractiveness was lost, other bifurcations would appear.

The bifurcation curves shown in Figure 2.1 separate regions of existence of periodic
orbits. The periods of these periodic orbits are given by “successive addition” of those
of “neighboring regions.”! We will make this more precise in section 3, but it can be
seen in Figure 2.2(a), where we show the periods of the periodic orbits found along the
curve shown in Figure 2.1 parametrized counterclockwise by a parameter A which will
be clarified in section 2.4. It can also be seen there that the symbolic sequences (some
of them labeled) of obtained periodic orbits are given by successive concatenation of
the “neighboring” ones.

Of relevant interest is the evolution of the n-number (see Definition 11) along
the aforementioned curve in Figure 2.1. This is shown in Figure 2.2(b), and follows a
devil’s staircase (a continuous and monotonically increasing function which is constant
locally almost everywhere).

IThe term “neighbor” refers to the concept of Farey neighbors; see section 3.1.
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(a)

Fig. 2.2 Bifurcation scenario along the curve, v(\), shown in Figure 2.1 and defined in (2.7). (a)
Periods of the existent periodic orbits. (b) n-number: ratio between number of R’s and the
period.

As explained in section 1, to our knowledge, this bifurcation scenario was first
described by Leonov in the late 1950s [95, 96, 97, 98] when studying a piecewise-linear
map similar to (2.1) by means of direct computations. Later on, this phenomenon
was studied in more detail from different perspectives. It was observed when study-
ing homoclinic bifurcations for flows [122, 40, 62, 130, 113, 60, 63, 100, 66, 80] (see
section 7.1.1 for more details), but also in electronic circuits given by the Van der
Pol oscillator [90, 99] or circle maps [88, 104]. Later on, it was rediscovered by the
nonsmooth community and called period adding in [22]. This is precisely defined in
Definition 19. However, this terminology is also used in some areas when referring
to other types of bifurcation scenarios, and especially frequently to what we call here
period incrementing bifurcation (see section 2.3). This is, for example, the case for
the area of grazing bifurcations (see [110]).

2.3. Overview of the Nonorientable Case: Period Incrementing. For the
increasing-decreasing case, one finds the bifurcation scenario shown in Figures 2.3
and 2.4. In Figure 2.3, as in the previous case, one can see that there exist an in-
finite number of bifurcation curves emerging from the origin of the parameter space
e X pr. Also as before the map chosen for the simulations was linear and globally
contracting, so the observed bifurcation curves are straight lines extending to infinity.
For a nonlinear case these lines would become nonlinear curves and, if contractiveness
was lost for larger values of the parameters, new bifurcations would be observed.

Unlike in the orientable case, only families of periodic orbits of the form L£"R
exist for the nonorientable case. Moreover, there exist regions in the parameter space
(marked in gray in Figures 2.3 and 2.4) where periodic orbits with symbolic sequences
L"R and L' TR coexist.

As mentioned in section 1, this bifurcation scenario was first described by Leonov
[95, 96, 97, 98]. Later on, it was studied for its relevance in homoclinic bifurcations
involving nonorientable homoclinic manifolds [80, 66]. It was rediscovered in [22]
when studying a linear piecewise-smooth map and named period incrementing. Full
details proving that the increasing-decreasing case leads to the occurrence of the
period-incrementing bifurcation scenario were given in [18].
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275

Fig. 2.3 Bifurcation curves on the two-dimensional parameter space pe X pr for a linear increasing-
decreasing piecewise-smooth map. Regions of coexistence are filled in gray. The periods of
the periodic orbits found along the curve v(\) are shown in Figure 2.4(a).

20 T ] [ - B T ] T ‘ [ W | T
3 3 3 N W e 3 A O B
B i ol - i
e ] 3 N N 0sf | ] . I B
3 3 3 N 06f | 3 3 N
o o = = = §i
o - R wl B - M I
i 1 i 1 = i ] — L0
L ] 3 L R 3 ] 3 L LR
{ ] 1 1£’R?_T_r? 02} i ] { ] 31 —
1 1 LR | 1 T b i 1 { 1 o=
R 1 1 1 I i 1 1 1 A A
— [ ) [ ] [l [ ) [ ) [ ] ']
N - . s 8 N . . R
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(a) (b)

Fig. 2.4 Bifurcation scenario along the curve, v(\), shown in Figure 2.3. (a) Periods of the existent
periodic orbits. Regions where periodic orbits coexist are filled in gray. (b) n-number: ratio
between number of R’s and the period.

2.4. Summarizing Theorem. The results presented in the previous sections are
summarized in the following theorem.

THEOREM 13. Let f be a map as in (2.1) satisfying conditions h.1-h.3. Let ~y be
a C* curve in the parameter space pz X ur (see Figures 2.1 and 2.3),

[07 1] — R27

v
(2.7) A (ue(A), pr(N),
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satisfying
H.1. pe(A) >0 and pr(X) >0 for A € (0,1),
H.2. (uc(N) >0 and (ur(N) < 0 for A€ [0,1],
H.3. pue(0) =0, ur(l) =0.
Then the bifurcation diagram exhibited by the map fx obtained from (2.1) after per-
forming the reparametrization given by v follows
(1) a period adding structure if 0 < fr(z) <1, x € (0,00);
(ii) @ period incrementing structure if —1 < fr,(z) <0, z € (0,00), for A € [0,1].
For a description of the bifurcation scenarios given in (i) and (ii) above, the period
adding and period incrementing cases, see, respectively, sections 2.2 and 2.3 for an
overview, and sections 3 and 4 for more details and proofs.
We now explain briefly the case when condition h.2 is not satisfied (f, is decreas-
ing).
REMARK 14. If condition h.2 is not satisfied and f(z) < 0 in (—o0,0), then
(iii) if fr(z) <0 for (0,00), only an LR-periodic orbit can exist for all A € (0,1);
(iv) if fr(z) > 0, for x € (—00,0) the bifurcation scenario is equivalent to (ii)
after interchanging £ and R in the symbolic dynamics.

Clearly, (iii) comes from the fact that, under these conditions, f.((—o0,0)) C
(g, 00) and fr((0,00)) C (—o0,—pur), and hence, due to the contractiveness of
these maps, f must possess an LR-periodic orbit.

The fact that the cases (iv) and (ii) are conjugate comes from applying the sym-
metries given by the change of variables x +— —zx.

3. Orientation Preserving Case.

3.1. Detailed Description. We first provide a detailed description of the period
adding bifurcation structure by stating some results which will be proved in the rest
of this section.

The bifurcation structure given by so-called period adding is strongly linked with
the ordering of the rational numbers given by the Farey tree. In order to explain
how this tree is generated, we first define the Farey neighbors. Recall that a rational
number p/q is irreducible if (p,q) = 1.

DEFINITION 15. We define the Farey sequence of order n (n > 1), F,, as the
succession of rational numbers p/q € [0,1] in ascending order, starting with 0/1 and
ending with 1/1, such that (p,q) =1 and ¢ < n.

For example, the Farey sequence of order 6 becomes

011 11213234%51
1651352531561
Note that all rational numbers are contained in F,, for some n > 0. We then have the
following well-known result (see [77]).

THEOREM 16. The following hold:
(i) p/q < r/s are Farey neighbors in Fy, if and only if rq — ps = 1;
(ii) if p/q <r/s, then

p_ptr _r

q q+s S

Moreover, if p/q and r/s are Farey neighbors in F,,, then p/q < (p+71)/(q+s)
and (p+1)/(q+ s) < L are Farey neighbors in Fyis.

S
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L R
(b)
Fig. 3.1 (a) Farey tree of rational numbers. (b) Farey tree of symbolic sequences. Both trees are

isomorphic by construction but also through dynamical properties of periodic orbits of ori-
entation preserving circle maps (see section 3.4).

DEFINITION 17. The fraction ZIZ giwen in Theorem 16 is called the Farey sum

or mediant of the numbers % and .

We now construct the Farey tree of rational numbers (see Figure 3.1(a)). Starting
with the Farey neighbors 0/1 and 1/1, the Farey tree is generated by obtaining rational
numbers by adding their numerators and denominators. That is, given two Farey
neighbors p/q and p’/¢’, they generate the child given by their mediant, (p+p’)/(¢+¢’),
and p/q and p'/q’ become the Farey parents of the rational number (p+p')/(¢' +¢').
Note that this provides all the Farey sequences F,, and, hence, all rational numbers
are found in the Farey tree and are uniquely identified with their Farey parents.

Consider a piecewise-smooth map as defined in (2.1), and recall that we are
interested in the simultaneous variation of the parameters u, and ur parametrized
by A € [0,1] through the reparametrization shown in (2.7). Then, under condition
(i) of Theorem 13, when this parameter is varied from 0 to 1, the periods of these
periodic orbits are given by the denominators of the rational numbers given in the
Farey tree (see Figure 3.1(a)).

As noted by some authors [57], other trees, such as the Stern-Brocot tree, can
also generate this sequence of periods. However, the most interesting relationship
between the Farey tree and the sequence of periodic orbits given by the period adding
concerns their associated symbolic sequences, not only their periods. To explain this,
we recall that the p-number (Definition 11) is given by the ratio between the number
of R's contained in a symbolic sequence and its length.

REMARK 18. As we will show in section 3.4 (Corollary 46 ), under condition (i) of
Theorem 13, the map f given in (2.1) can be reduced to a circle map, and the number
1 of a symbolic sequence of a periodic orbit becomes the rotation number of the circle
map (see Remark 41).

Under condition (i) of Theorem 13, when A in (2.7) is varied from 0 to 1, one
obtains periodic orbits with symbolic sequences x> € W, with x = x(\) € W, 4. If
one then considers the n-number associated with these symbolic sequences, (), it
turns out that it is a continuous and monotonically increasing function of A whose
images are all rational values between 0 and 1. However, the set of values of A for
which () is not defined (it “becomes irrational”) forms a Cantor set of zero measure.
Hence, n()\) is a devil’s staircase, as it is continuous, monotonically increasing, and
locally constant almost everywhere. This function is shown in Figure 2.2(b) and is
the well-known function formed by the rotation numbers of the periodic orbits of the
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so-called Arnold circle map

1
Opi1 =0p +Q— —sin(276,,),
2w

when (Q is varied from 0 to 1.

Note that, for n = 0 and 7 = 1, the map possesses fixed points with symbolic
sequences L and R, respectively. These undergo border collision bifurcations for A = 0
and A = 1, respectively.

Although each periodic orbit for A € (0,1) is in one-to-one correspondence with
a rational number in the Farey tree through the n-number, their symbolic sequences
are not, in principle, uniquely identified. For example, assume that for a certain value
A = Ag5 there exists a periodic orbit with = 2/5. Its symbolic sequence could
be given by any of the generating minimal blocks £2RLR or L£L3R2, as they have
length 5 and contain two R symbols. It turns out that the symbolic sequence of a
periodic orbit with n-number p/q is uniquely determined. To explain this correspon-
dence between periodic orbits and symbolic sequences we construct the Farey tree of
symbolic sequences as follows. Starting with the sequences £ and R, one concatenates
those sequences whose n-numbers are Farey numbers. By construction, this provides
a unique correspondence between rational numbers and symbolic sequences through
their 7-number and the Farey tree. That is, to each rational number P/Q in the Farey
tree one associates a symbolic sequence A given by the concatenation

A = af,

where « and § are the (minimal) symbolic sequences of the Farey neighbors rational
numbers p/q and p’/q’, respectively:

e p/a<p'/d,

* p'g—pq =1,

 P/IQ=(p+p)/(a+4d)
As will be discussed in section 6, this concatenation provides the so-called mazimin
sequences (see Definition 56).

We will prove in section 3.4 (Propositions 45 and 47) that the following corre-
spondence holds. The symbolic sequence of the periodic orbit with n-number p/q
is the one which corresponds to rational number p/q in the Farey tree of symbolic
sequences.

We are now ready to provide a formal description of the period adding bifurcation
structure.

DEFINITION 19. We say that f, as in Theorem 13(i), undergoes a period adding

bifurcation structure if the following hold:

(i) for all values of X\, except for a Cantor set with zero measure, the map f
possesses a unique attracting periodic orbit;

(ii) the n-number, n € Q, as a function of A follows a devil’s staircase: it is a
monotonically increasing continuous function not defined in a Cantor set of
zero measure (it is hence locally constant for almost all values of \);

(iii) fa. possesses a A-periodic orbit with n = P/Q, (P,Q) = 1 and there exist
values Ao < Aa < Ag for which fx, and fAﬁ possesses a- and [-periodic
orbits, respectively, whose n-numbers are Farey neighbors with mediant P/Q,
and A is the concatenation of o and B: A = af.
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3.2. Summary of the Proof. In order to facilitate the proof of the result de-
scribed in detail in section 3.1, we provide a schematic summary of the necessary
steps.

(1) By performing the change of variables given in (3.1), we first show that a piecewise-
defined map f as in (2.1) satisfying (i) in Theorem 13 is an orientation preserving
circle map (see Definition 20). Although this circle map will be discontinuous, in
section 3.3 we will show how classical results for continuous circle maps also hold.
In particular, we will show the following;:

(a) Given a map as above, its rotation number exists and is unique (Proposi-
tion 25).

(b) If a map as above has a rational rotation number, then it possesses a unique
and stable periodic orbit (Proposition 28 4 contractiveness).

(¢) When a map as above has a rational rotation number, the unique periodic
orbit must be p, g-ordered (it is a twist orbit; see Definition 37) (Proposi-
tion 38).

(2) In section 3.4 we provide symbolic properties of the itineraries of periodic orbits
of orientation preserving circle maps. More precisely:

(a) In Proposition 45 we show that the symbolic itinerary of a twist periodic
orbit is a p, g-ordered symbolic sequence. This identifies each periodic orbit
of an orientation preserving map with a unique symbolic itinerary through
its rotation number.

(b) In Proposition 47 we show that the itineraries of p, g-ordered periodic orbits
are given by concatenation of the itineraries of the periodic orbits with ro-
tation numbers the Farey parents of p/q. Hence, they are in the Farey tree
of symbolic sequences shown in Figure 3.1(b).

(3) In section 3.4 we also study one-parameter families of orientation preserving (dis-
continuous) circle maps. This is equivalent to varying the parameter A under
the conditions of Theorem 13 (i). Using the continuity of the rotation number
(Proposition 35) and a result of Boyd (Theorem 49), we show that the rotation
number (and hence the n-number) follows a devil’s staircase leading to the adding
scenario when A is varied from 0 to 1.

We emphasize that the previous steps provide (to our knowledge) the shortest path

to proving (i) of Theorem 13. However, it is not the only one. In section 6.4 we

provide an alternative to cover some of the steps mentioned above. These involve the
concepts of mazximin sequences and quasi-contractions.

3.3. Reduction to an Orientation Preserving Circle Map and Some Prop-
erties. In this section we first show that, under condition (i) of Theorem 13, the
piecewise-smooth map (2.1) can be reduced to a class of orientation preserving (in-
creasing) discontinuous circle maps.

Then we present results on circle maps which are well known in the continuous
case. However, by making small modifications to the classical proofs we adapt them
to the discontinuous case. We will make this clear in each particular situation.

Let us observe that, under condition (i) of Theorem 13, the piecewise-smooth
map (2.1) is increasing on both sides of the discontinuity x = 0. Hence, all the
dynamics are attracted into the interval [fz(0), fr(0)] = [—pr, pc] (see Figure 3.2).
By identifying these two values and considering the circle as R/[—pur, tic], the map
becomes a circle map which is continuous at x = 0, but not necessarily at ¢ = —ur ~
pr (see Figure 3.2(a)). As we are interested in varying the parameters pug and pz,



240 ALBERT GRANADOS, LLUIS ALSEDA, AND MACIE] KRUPA

(a) (b)

Fig. 3.2 (a) Reduction of an increasing-increasing piecewise-smooth map to an orientation preserv-
ing circle map. (b) Circle map after the change of variables given in (3.1).

we perform the change of variables
¢ : [_MRa /J'L',] — [07 1]7

T — THuR ,
Hetpr

(3.1)

which is a strictly increasing homeomorphism mapping —ur to 0 and us to 1. Of
special interest will be the value

R
CcC = 0 = _—,
40) MR + pic

which separates the behaviors given by ¢o fro¢™! and ¢o fro¢~!. Hence, by identify-
ing the circle with the interval [0, 1], ST = R/Z, we have reduced the piecewise-smooth
map to a class of circle maps which consists of increasing (orientation preserving) cir-
cle maps reaching exactly once the value 1 (degree one) and not necessarily continuous
at x = 0 ~ 1. In the following definition we make precise such a class of maps.

DEFINITION 20. We say that
(3.2) f:8t — St

S = R/Z, is an orientation preserving circle map (of degree one) if there exists a
unique ¢ € [0,1] (where [0, 1] is identified with the circle S*) such that the following
hold:

C.1. fis C° in (0,¢) and (c,1).

C.2. There ezists c € [0,1] such that f is increasing in [0,c¢) and (c, 1].

C.3. f(c7)=1 and f(ct) =0.

CA. F(0%) = f(17),

Due to the existence of ¢ fulfilling C.3, such a circle map is of degree one, as the
image of S* by f twists at most once around S'. When also considering condition C.4
we ensure that such an orientation preserving map is invertible. However, condition
C.4 allows this class of maps to be not necessarily continuous at x = 0. Hence, at
xz = 0 and x = 1 one can choose between the images from the left or right of x = 0
(or indeed any other value). When convenient, we will choose both values at x = 0
and z = 1 and deal with a two-valued function.
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Fig. 3.3 Lift of the of the circle map shown in Figure 3.2(b). In gray we show the circle map for
z € (c1).

Notice that, at this point, we are not requiring contractiveness, and all results in
this section hold also for expansive maps as long as conditions C.1-C.4 are satisfied.

DEFINITION 21. Let f be a map satisfying conditions C.1-C.4. We will say that
F is a lift of f of degree N > 0 if

F(z+n)= f(z)+nN if 0 <z <c,

(33) Flz+n)=f(z)+nN+1 ifc<z <Ll

If N =1, we will refer to F' simply as the lift of f.

REMARK 22. The previous definition of the degree of a circle map differs from
the standard one. When f is a continuous circle map, the degree of its lift F' is the
integer number N such that

F(zx+1)=F(x)+ N,

and F is also continuous. In our case, as f is discontinuous at x = 1, the lift F
cannot be continuous and, hence, there is some freedom when choosing its degree.

Note that if f is a circle map satisfying C.1-C.4, then, if it is continuous at
x=0n~1 and F is its continuous lift, then necessarily N =1 and F is of degree one
in the classical sense.

From now on, we will restrict our consideration to lifts of degree one.

REMARK 23. Due to condition C.4, the lift of an orientation preserving map is
an increasing map, possibly discontinuous at integer numbers, where it undergoes a
positive gap (see Figure 3.3).

REMARK 24. In Definition 21 the value of the lift F' at integer numbers n is not
uniquely defined. When convenient, we will use the lift given by f(17)+n, f(07)+n,
or both. The latter will lead to a two-valued lift.

The following result is well known and provides the definition of the rotation num-
ber of an orientation preserving circle map satisfying C.1-C.4. This was introduced
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by Poincaré [111] for homeomorphisms of the circle of degree one and later studied
and extended to rotation intervals by many authors (see [3] and references therein).
For discontinuous orientation preserving circle maps, this was proven in [115, 59].
However, if one considers a two-valued lift at integer numbers (see Remark 24), then
the standard proof holds.

PROPOSITION 25 (see [59, I11.1.1-1], [115, Theorem 1]). Let f be a discontinuous
orientation preserving map satisfying C.1-C.4, and let F be its lift. Then, for all
r € R, the limit

(3.4) lim Fz)~=
T—00 n

exists and is independent of x.

Proof. We give the standard proof a slight modification to overcome the discon-
tinuities at integer numbers.
As F'is increasing, we find that, for 0 < z < 1,

Fr(07) _ FMOY) _ @) FhT) P

Noting that we take F' two-valued at integer values, we can write this as
Fr0) _ F'a) P

n n n
where F(0) and F(1) can be each of the lateral values.
Using that F'(x+1) = F(x)+1 and applying it recursively to F"(1) we have that

)

Fr(0h) _ Fi(z) _ F(1H) _ F(0f) +1

n n n n

which we can write as

where F(1) = F(0) + 1 means F(1%) = F(0%) + 1.
Hence, taking limits we get

lim = lim = lim
n—o00 n n—00 n n—00 n

3

and the limit does not depend on z. We next show that this limit indeed exists. We
apply Proposition 1 of [115], which states that, if a sequence a,, satisfies

(35) |am+n — Qm — an| S A
for all n,m > 1 and some constant A, then there exists some p such that
lan, —np| < A.

The sequence F™(0) satisfies (3.5) with A = 1. To see this, we use that F(x 4+ n) =
F(z) 4+ n to obtain, for any = > 0,

F'z)=F"(z (mod1l))+[z] < F"(1)+x=F"(0)+z+1,
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where [-] denotes the integer part. Then, taking = F™(0), we get
F"t™(0) < F™(0) + F™(0) + 1,
and (3.5) is satisfied with A = 1. Then, there exists some p such that

Fm 1
lim ©) < lim e =p,

n—oo N n—00 n

and the limit exists. 0

Note that this proof differs from the one given in [3]. There, it is first proved that
if f possesses a periodic orbit, then this limit exists and is rational; then it is shown
that, as above, it does not depend on z. Subsequently, the definition is extended
to all real numbers using monotonicity and the Dedekind cut construction. In this
approach we show the existence of this limit and then we discuss the dynamics of the
map depending on its value.

The previous result permits one to define the rotation number of a circle map f
fulfilling C.1-C.4. Note that, in general, this depends on the lift of F'. However, recall
that we have restricted consideration to lifts of degree one.

DEFINITION 26 (rotation number). Given a map f satisfying C.1-C.4 and F its
lift, we define the rotation number of f as

p(f) = lim Fa-e

n—00 n

for any x € R.

REMARK 27. The fact that the limit given in (3.4) exists implies that F™(x) grows
linearly with n:

F"(x) —x ~np(f), n>> 1.

Recalling the properties shown in (3.3), the rotation number p(f) can be seen as the
average number of times that the lift F' crosses an integer number per iteration.

The next result is also standard for continuous circle maps (see Proposition 3.7.11
of [3]) and provides the existence of a periodic orbit if the rotation number is rational.
Below we prove that it also holds for discontinuous circle maps.

PROPOSITION 28. Let F be the lift (of degree one following Definition 21) of a
circle map satisfying C.1-C.4. Then p(F) =p/q, (p,q) = 1, if and only if there exists
xg s.t. F(xo) = xo + p.

Proposition 28, whose proof is given below, is stated assuming that the map F
is two-valued at integer values (see Remark 24). This ensures that one always finds
a periodic orbit if the rotation number is rational. However, if one considers only
one image at integer numbers, given by f(0%) or f(17), one can lose the existence of
a periodic orbit and and end up with an w-limit consisting of ¢ points mimicking a
periodic orbit. That is, one recovers a result given in [115], which we repeat next for
completeness.

PROPOSITION 29 (see [115, Theorem 2]). Let F' be the lift (of degree one following
Definition 21) of a circle map satisfying C.1-C.4 and p,q € Z with ¢ > 0. If p(F) =
p/q, then exactly one of the following holds:
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(i) There exists xg € R such that F(xq) = xo + p.
(ii) For all x € R, F(x) > x + p, and there exists xo € R such that

lim F9(x) =z + p.

{IJ*}JIJO

(iii) For all x € R, F4(x) < x + p, and there exists xg € R such that

lim F(z) =x0 +p.

z—axd
Conversely, if either (1), (ii), or (iii) holds, then p(F) = p/q.

REMARK 30. The situations (ii) or (iil) occur when xo = ¢, that is, when a pe-
riodic orbit bifurcates and the image of x = 0 by the circle map takes the value on
the “wrong” side. More precisely, if f(0) = f(0T), then (ii) occurs when a periodic
orbits bifurcates when approaching x = ¢ from the left. Similarly, if f(0) = f(17),
(iii) occurs when a periodic orbit bifurcates by colliding with x = ¢ from the right.

For completeness, we will provide a proof of Proposition 28 based on [3] but
adapting it to the discontinuous case, as in the proof of Proposition 28. It relies on
the following two lemmas.

The first lemma is equivalent to Lemma 2 of [115]. We state it as in Lemma
3.7.10 of [3], but we adapt its proof to also hold for discontinuous circle maps.

LEMMA 31. Let F' be the lift of a circle map satisfying C.1-C.4, and let p € Z.
Then the following hold:

(i) If Fi(x)—p > x for all x € R, then there exists e > 0 such that p(F) > p/q+e.

(ii) If Fi(x)—p < x for allx € R, then there exists € > 0 such that p(F) < p/q—e¢.

Obviously, the proof provided in [115] also holds. However, by considering that
F is two-valued at integer numbers, we can proceed as in the proof for the continuous
case [3], which we repeat for completeness.

Proof. We show (i); (ii) can be proven analogously. Note that G(z) = F(z)—p—=z
is of degree of zero, i.e., G(x + 1) = G(x). Hence, recalling that F is two-valued at
its discontinuities and hence F4(x) —p — x > 0 holds for each lateral value, it follows
that there exists some & > 0 such that, for every z, F9(z) —p — x > 6. Then, for all
k we find

k—1
F(x) —z =Y (FI(F"(x)) — F"(z)) > k(p + 0).

=0

Hence, as from Proposition 25 the rotation number exists and is unique, we have that

F*(z)—x _k(p+d) p &
F)=1 > =+ -
p(F) e qk - kg q i q
which proves (i) with e = §/q. 0

Note that the proof given in [3] is slightly different, as it does not use the unique-
ness of the rotation number.
The following lemma is trivial for the continuous case.

LEMMA 32 (see [115, Lemma 3]). Let

F:R—R
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be a (not necessarily continuous) nondecreasing map fulfilling F(x + 1) = x + 1 for
all x € R. Assume that F(x1) > x1 and F(x9) < x2 for some x1,x2 € R. Then there
exists some xo such that F(xg) = xg, and F is continuous at the left at xg.

We provide a more intuitive proof of this lemma.

Proof. Assume F(x) # z for all  and recall that if 7' undergoes a discontinuity,
the jump must be positive. Suppose F(0) > 0. Then the existence of xo implies
that F either crosses the diagonal or undergoes a negative jump, both of which give
a contradiction. If F(0) < 0, then the existence of x; implies that F' cannot stay
below the diagonal, unless it skips over it by a positive jump. In this case, as F'(1) =
F(0) + 1 < 1, arguing as before we conclude that F' has to cross the diagonal. ad

REMARK 33. The class of maps considered in Lemma 32 is not necessarily re-
stricted to lifts of circle maps satisfying C.1-C.4. Note that they may undergo dis-
continuities with positive jumps between 0 and 1, whereas the lifts of circle maps
satisfying C.1-C.4 are continuous in (0, 1).

We now prove Proposition 28 by adapting as before the proof given in [3] to the
discontinuous case.

Proof of Proposition 28. Assume that F'9 —p has a fixed point. Then we find that
Fm(z) — np = xo for all n > 0, which implies that p(F) = p/q.

Assume that p(F') = p/q and that F%(x) — p does not have a fixed point. Then,
by Lemma 32, we get that either F9(x) —p < z or F4(xz) — p > x. However, then,
by Lemma 31, there exists € > 0 such that either p(F) > p/q+ ¢ or p(F) < p/q — ¢,
which is a contradiction. O

Note that, besides the fact that we deal with a discontinuous lift, the proof above
differs from the one given in [3] in the fact that we can use the existence and uniqueness
of the rotation number provided by Proposition 25.

REMARK 34. Proposition 28 provides neither the uniqueness nor the stability of
periodic orbits. Howewver, if, in addition to C.1-C.4, one adds contractiveness, i.e.,
f'(x) <1 forx € (0,¢)U(c, 1), then one gets that such a periodic orbit is unique and
attracting. Note that f might not be differentiable at xt =0~ 1 and z = c.

The next result provides the continuity of the rotation number; i.e., if two lifts of
orientation preserving maps are “close” (using the uniform norm), then so are their
rotation numbers. Note that, assuming that these maps are two-valued at integer
values, one can always choose the proper images to properly compare them. Hence,
its proof for the discontinuous case becomes the standard one though taking into
account this fact and Lemmas 31 and 32.

PROPOSITION 35 (see [3, Lemma 3.7.12]). The function

F— p(F)

considered in the space of lifts of circle maps satisfying C.1-C.4 is continuous with
the norm of uniform convergence.

Proof. We proceed as in [3] by adapting the proof to the fact that F' is two-valued
in order to overcome the discontinuities at integer numbers.

Assume p(F) # p/q. Then the function G(x) = F4(x) — p — x is away from zero.
By Lemma 32 (applied to G(x) + x), we get that either G(x) < 0 or G(z) > 0 for
all x € R. Then, by Lemma 31, we have that either p(F') < p/q or p(F) > p/q,
respectively.
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We now note that G(x) has degree 0; that is, G(z+1) = Fi(z+1)—p—(z+1) =
Fi(z)—p—x = G(x). Hence, we can ensure that if G is in a small enough neighborhood
of G, then either G < 0 or G' > 0, respectively. This implies that if F' is in a small

enough neighborhood of F, then either p(F') < p/q or p(F') > p/q, respectively.
Hence, we have shown that if there exist p1/¢1 and pa/ga such that

PLcpr) <22,
q1 q2

Py <2,
q1 q2
and hence F —— p(F) is continuous. O

The next lemma shows that the rotation number is increasing as a function of F.
LEMMA 36. Let f and g be two circle maps satisfying C.1-C.4 and let F and G
be their lifts, respectively. If F' > G, then p(f) > p(g).

Proof. Let x < cand F' and G be two lifts of f and g such that F/(x+1) = F(z)+1
and G(z+1) = G(z) + 1. As F and G are increasing functions undergoing a positive
gap at x = k, F"(x) > G"(x), even if, for some n, F"(z) or G™(x) reach any of the
discontinuities at x = k. Hence,

F'(z) —x > G"(x) -z

As the rotation number does not depend on z, we obtain p(f) > p(g). 0

We next study properties of the periodic orbits of orientation preserving circle
maps satisfying C.1-C.4. These will be crucial to show symbolic properties of periodic
orbits in section 3.4. To this end, we provide the following definitions.

DEFINITION 37 (twist and p, g-ordered lifted cycle). Let f be a circle map and
x; € St =R/Z such that
(3.6) O<azo<a1 < <mg—1 <1
and f9(z;) = z;, 0 <i < q—1. Consider the projection

Im: R — S'=R/Z,

(3.7) z +— z (mod 1),

and the lifted orbit or lifted cycle

S={I""(z:)},

which consists of adding Z to the orbit (3.6). Let F' be the lift of f. We say that S is
a twist lifted cycle or orbit of F' if F restricted to S is increasing.
If S is a twist lifted cycle of f and
F™(x) —

o )2

n—00 n q
for all xz € S, we say that S is a p, q-ordered lifted cycle of F' and xp < --- < xq—1 18
a p,q-ordered cycle or periodic orbit of f.
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The following result shows us the relationship between the spatial and dynamical
orderings of a p, g-ordered lifted cycle.

PROPOSITION 38. Let 0 < zg < --- < z4—1 be a p,qg-ordered cycle of the circle
map f, and let F be its lift and S the corresponding lifted cycle. Assume that S is
given by

S={z0< " <Tgo1 <Tg <+ <Tgg1 < -}
withzj=x;+nifj=i+nqg, 0<i<qg—1. Then
(3.8) Flz)) = 2isp,
(3.9) Fi(z;) = x; +p.

The proof of this result is as in the continuous case (see [3, Lemma 3.7.4]) but
taking into account that the lift F' is two-valued at integer numbers. We include it
here for completeness.

Proof. By properly choosing the image of F' at integer values, the lift F' restricted
to the lifted cycle of the periodic orbit is an order preserving bijection. That is, by
iterating the points 29 < --- < z4_; one visits all the points of the lifted cycle exactly
once, and the order is preserved (F(z;) < F(x;) if and only if z; < ;). Hence,
F(x;) = x4, for all i and some integer r. If not, then one finds that F(z;) = z;4r,
and F(x;) = Tij4r,. I r1 # 7o, then the numbers of points of the lifted orbit in
[y, Titr,] and in [z, 2;] do not coincide, and hence the order cannot be preserved.

As the rotation number is p(F') = p/q, we have that necessarily z; +p = F(z;) =
ZTitqr- As x; belongs to a g-periodic cycle, we get =i 4 = x; + 7, which is what we
wanted to show. O

The next result is also very well known for continuous circle maps. As in previous
results, we provide a standard proof adapted for the discontinuous case.

PROPOSITION 39. Let f be a circle map satisfying C.1-C.4 and assume that p(f) €
R\Q. Then if f is contracting (f'(z) <1, z € (0,¢) U (c,1)) and condition C.4 is a
strict inequality, the w-limit set of the circle is a Cantor set.

Proof. Recall that if f(0T) > f(17), then f is invertible but not injective. Let
U= (z_,z4) with z_ = f(17) and 4 = f(0T). We first show that, if p(f) is
irrational, then ¢ ¢ f*(U) for all n > 1. As f is invertible in S'\U, we consider f~!,
which is a function with a “hole,” as it is not defined in U. After filling this hole with
the value 1, we obtain the continuous function

[N y) ifyelfo,az_],
(3.10) gly) =41 ifyefz_,zy],
f ) ifye oy, 1]

(see Figure 3.4), which has the same rotation number as f with different sign. Note
that

Hence, if, for some n, ¢ € f*(U), then g"(c) € U, g"*(c) = 1, g""%(c) = ¢, and
hence g has a periodic orbit of period n 4+ 2, which is not compatible with having an
irrational rotation number (see Proposition 28).
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Fig. 3.4 Inverse of an orientation preserving circle map satisfying C.1-C.4 with a flat part. See
(3.10).

Next we show that

) rshH=s\{Jrw

n>0 i>0

is a Cantor set. Aslongasc ¢ fm(U), at each iteration, f(S1) = S\ f*~1(U) consists
of subtracting a nonempty interval from the interior of S*\ f*~1(U) (see Figure 3.5).
Due to the contraction of f, the length of the subtracted interval tends to 0. Moreover,
by Corollary 3.3 of [133], the total removed amount, U;>o f*(U), is dense. This comes
from the fact that, although the map g is not differentiable, the Denjoy theorem holds
and, if the rotation number is irrational, g has no “homtervals”; in particular, U is not
a homterval and the sequence ¢"(U) is pairwise disjoint. Therefore, by construction,
S\ Uiso f(U) is a Cantor set. Moreover, also by construction, the images of x_ and
x4 are dense in this set. Thus, every point in S'\ U;>¢ f*(U) has a dense orbit, and
hence this set becomes the w-limit of f. d

REMARK 40. If condition C.4 is satisfied by an equality (the map becomes con-
tinuous) and the rotation number is irrational, then the w-limit of f might also be a
Cantor set or might be the whole circle. If f is C?, then the Denjoy theorem holds and
the latter occurs. However, if it is C* or C°, f might become a Denjoy counterezample
(see [107]), and its w-limit might be a Cantor set.

To conclude this section, we recover a piecewise-smooth map as defined in (2.1).
As mentioned above, after applying the change of variables given in (3.1), the map
f(z) = ¢o fop~!(x) becomes an orientation preserving map satisfying C.1-C.4 with

HR
c=¢(0) = ——.
©) Ur + e
After applying the reparametrization v given in (2.7), the value

pRr(N)

= pr(A) + pe(A)
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0 c T_ 1
ve — F :
W

/——/R/‘/\
Yo 4+ e ]

Fig. 3.5 Cantor set generated by iterating U: new “holes” are created as long as ¢ ¢ f™(U).

becomes a strictly decreasing function of A such that

lim ¢y =1,
A—01
lim ¢y = 0.
A—=1—

Moreover, for A = 0 and A = 1, the map f possesses fixed points at 2 = 1 and x = 0,
respectively.

Given a piecewise-smooth map f satisfying h.1-h.3, we will define its rotation
number as the rotation number of the map f = ¢ o f o ¢! obtained after a reduction
to a circle map:

p(f) = p(f).
By abusing notation, we will also refer to the lift of f as the lift of f.

REMARK 41. Let (zo,...,2q4—1) be a periodic orbit of a piecewise-smooth map
whose associated circle map satisfies conditions C.1-C.4, and let x = (Xo -+ - Xq-1) €
{L,R}? be its associated symbolic sequence following the symbolic encoding given
in (2.3):

x; = a(fi(z;)), 0<i<q-—1.

Then, recalling Remark 27 and the fact that the image of x by the lift of f, F(x),
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crosses an integer number m when x < c+m < F(x), the rotation number of f, p(f),
becomes the n-number defined in (2.6). That is, it becomes the ratio of the number of
symbols R contained in x to the length of the sequence X, q.

3.4. Symbolic Dynamics and Families of Orientation Preserving Maps. In
this section we describe some dynamical properties of maps satisfying conditions C.1-
C.4, focusing specifically on periodic orbits, their symbolic itineraries, and their rela-
tionship with the rotation number. In some of the results, we will additionally require
the map to be contractive; however, we emphasize that, when not specified, the results
that we present here do not require contractiveness.

The main result in this section is the following theorem, which is, recalling that
periodic orbits of orientation preserving circle maps satisfying C.1-C.4 are well or-
dered, a straightforward consequence of Proposition 47.

THEOREM 42. The symbolic sequence of the itinerary of a periodic orbit of a circle
map satisfying C.1-C.4 with rotation number P/Q is the sequence in the Farey tree
of symbolic sequences associated with the rational number P/Q.

At the end of this section (Lemma 50) we show that, for a piecewise-smooth
map (2.1) satisfying (i) of Theorem 13, the n-number defined in Definition 11 follows
a devil’s staircase. This is a consequence of Theorem 49 proved in [34].

To show this, we recall that the set W), , consists of the g-periodic symbolic
sequences with p symbols R (see Definition 9). Of special interest will be the well-
ordered symbolic sequences contained in these sets.

DEFINITION 43. Let x € W, 4 be a periodic symbolic sequence. Consider the
(lexicographically) ordered sequence given by the iterates of x by o,
(3.11) 0 (x) < o (x) < o™(x) < - < ol (x).

We say that the sequence X is a p,q-ordered (symbolic) sequence if

1 — 151 = constant.

In other words, o acts on the sequence (3.11) as a cyclic permutation: there exists
some k € N, 0 < k < q, such that

ij=1;_1+k (mod gq).
The next example illustrates the previous definition.

EXAMPLE 44. The sequence x = (L*RLR)> € Was is 2,5-ordered, and the
sequence y = (L3R?)>° € Wa 5 is not. If we consider the four iterates of x and y by
o, we obtain

o(x) = (LRLRL)™, oy) = (L*R*L)>,
o%(x) = (RLRL?)™, o*(y) = (LR?L?)>,
03(x) = (LRLR)™, o3 (y) = (RELY)~,
ot(x) = (RL*RL)>, otly) = (RL*R)™

Note that 0°(x;) = x;. When we order the iterates by o, we obtain
x < 0%(x) < 0(x) < ot (x) < 0% (%),
y <oly) <o*(y) <o'(y) <o*(v),

and x 1is 2,5-ordered with k = 3 while y is not well ordered.
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The following result identifies the symbolic sequences of periodic orbits whose
lifted cycles are twist cycles (see Definition 37).

PROPOSITION 45 (see [59, Proposition I11.1.1-2]). Under the conditions of Propo-
sition 38, if the lifted cycle S is p, q-ordered by F' (see Definition 37), then the itinerary
I¢(x;) € Wy q is a p,q-ordered symbolic sequence (see Definition 43 ).

Proof. Let k be such that
(3.12) (k—1)p < q < kp.

We first note that, for 0 <4,5 < ¢ — 1, we have

If(ﬂii) < If(l’j) 1< 7.

We then write

kp=q+r r>0.

Then the result comes from the fact that

ro < xp < Tp,
which occurs if and only if 0 < r < p. Assume that » > p. Then ¢ +r —p > g and
hence (k — 1)p > ¢, which contradicts (3.12). Letting x = If(x¢), this implies

3

x < O’k (mod q) (X) < O_Qk (mod q) (X) << O_(N—l)k (mod q) (X) _ O_Nk (mod q) (X)

where N is the smallest such that Nk =0 (mod ¢). O

The next result formalizes what was stated in Remark 41: the n-number asso-
ciated with the symbolic sequence of a periodic orbit (Definition 11) of a piecewise-
smooth map satisfying (i) of Theorem 13 becomes the rotation number (Definition 26)
of the orientation preserving circle map obtained after the change (3.1).

COROLLARY 46. Let f be an orientation preserving map, and let x belong to a
g-periodic orbit with symbolic sequence Iy(x) = x> € W, .. Then the rotation number
becomes

That is, it is given by the ratio between the number of R symbols contained in x and
the period, q, of the sequence.

Our next step consists of showing that the symbolic sequence associated with a
periodic orbit of an orientation preserving circle map belongs to the Farey tree of sym-
bolic sequences shown in Figure 3.1(b). More precisely, we show that such a symbolic
sequence is obtained by the concatenation of the symbolic sequences associated with
the periodic orbits of the Farey parents of its rotation number. As a consequence, one
obtains Theorem 42, given above.

Note that this result provides an alternative isomorphism between the Farey tree
of rational numbers and the Farey tree of symbolic sequences (see Figures 3.1(a)
and 3.1(b), respectively) by means of the dynamical properties of circle maps.

In section 6.4 we will present an alternative approach using the mazimin proper-
ties of these sequences.
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PROPOSITION 47. Let f be a circle map satisfying C.1-C.4 and assume it has a
periodic orbit with rotation number P/Q, (P,Q) = 1. Let A>® € Wp g be its symbolic
sequence, and assume that A is minimal:

A =minc®(A).
£>0

Let p, q, p’, and q' be natural numbers such that

* P/Q=(p+1)/(a+4d),

* (pg)=(q) =1,

e pqg—pq =1,
that is, p/q < p'/q" are the Farey parents of P/Q.

Let o> € Wy 4 and 5 € Wy o be the symbolic sequences of the periodic orbits

with rotation numbers p/q and p'/q’, respectively. Assume that o and  are minimal.
Then A is the concatenation of o and f3:

A = af.

Proof. Let

0<Zo<21<-'-<2Q,1<1

be a periodic orbit with rotation number P/Q. Let us consider the lifted cycle given
by 1171 (2;) given in (3.7),

0<Z0<Z1<"'<ZQ_1<1<ZQ<ZQ+1<"'<ZQQ_1<2<ZQQ<"'
-'-<ZPQ71<P<ZPQ<---.

Consequently, the following identity holds:
(3.13) Zj+m@Q = %j +m, where j, m € Z.

Let F be the lift of f as in Definition 21. Due to Proposition 38, the points z; are
P, Q-ordered by F'

F(Zl) = Zi+p,

We now construct two subsequences, (x;) and (y;), as follows (see Example 48).
The first consists of the lifting of the set {zo, f(20),...,f9 *(20)} (the first ¢
iterates of zp), given by

{znP+i|0<n<gq-1,i€Z}.

Since p and g are relatively prime, every integer j is uniquely represented as j = np-+iq.
Let (z;)jez be the sequence defined by

(3.14) Tnptig = ZnPtiQ, 0Sn<qg—1, i1€Z.
We first prove that (z;);ez satisfies

0<CC0<CC1<'-'<5Cq71<1<$q<$q+1<'-'<$2q71<2<$2q<-'-
(3.15) e < Tpge1 <P < Tpg < e
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To see this, we show that the sequences (zxp)rez and (zxp)rez skip integer numbers
at the same iterates; that is, if

2k—1)p <1 < zkp (<:> (k—1)P<iQ < kP),
then
T(h—1)p <1 < Thyp ( — (k—1p<ig< kp).

This comes from the fact that, recalling (ii) of Theorem 16, p/q and P/Q are Farey
neighbors, and hence they are in the path of the Farey neighbors i/k and i/(k — 1).
Therefore, we have

p )
R A
¢ Q ¢ -1
because P/Q is the Farey median of p/q and p'/q’.

Now let I = kP (mod Q) and let ¢ be such that

zg—1p < 21 < zZtp.

Then we must have
T(t-1)p < T < Tip,

where [ = kp (mod ¢). Otherwise, the sequences z;p and x;, could not skip integer
numbers at the same time. This shows that necessarily the sequence (z;);ecz must
satisfy (3.15). Further, it follows from (3.13) and (3.14) that

(316) xj+q;D :$J+p7 j € (Ovaq_l}
Moreover, for j = np +iq, n # q¢ — 1, we have
(3.17) F(zj) = F(2nP+iQ) = ZnP+iQ+P = T(nt+1)p+ig = Tjtp-

Note that, for n = ¢ — 1, (3.17) does not hold, as F(z(q—1)p+iQ) = 2qP+iq does not
belong to the sequence (z;)icz.
Hence, we have that

(3.18) F(z;) =xj1p, j=np+ig,n#q—1 (mod g).

As the lifted sequence (z;);cz satisfies (3.16) and (3.18), its symbolic sequence, o €
Whp.,q, is the one associated with a p, g-ordered lifted cycle.

We now obtain another subsequence derived from the last ¢’ points of the first @
iterates of the point zg. The first of these ¢’ points is

i (ZQ) = ZqP-
Note that, as p/q < p’/q’ are Farey neighbors, we obtain

L=p'q—pd =p'q+ps—pa—pd =@ +p)g—plg+4q)=qP—pQ.
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Therefore,
gP=14+pQ =1 (mod Q).

This implies that, when projecting the point z,p at the circle R/Z (identified with
[0,1]), we obtain II(z4p) = 21. Therefore, when lifting the projection of the last ¢/
points of the first @ iterates of zy, we obtain the sequence given by

(319) Ynp'+iq" = Z14+nP+iQ> 0 <n< q/ - 1a 1 € 7.
Arguing as before, this sequence has the form

O<yo<y1 < - <Yg-1 <1 <yy <yg41 < <Yog-1 <2< Ygg <---
...<yp,q,7l<p/<yp,q,<...

and satisfies

Fi(yo) =yiprs q<i<q+q —1,
Yitg'p = Yi + PI~

Hence, its symbolic sequence 8 € W, o is the one associated with a p’, ¢’-ordered
lifted cycle.
Note that a and S are minimal, as they are associated with the iterates of the
lowest positive point of the sequences (z;) and (y;), o = 20 and yo = 21, respectively.
By construction, the symbolic sequence A € Wp ¢ is the concatenation of o and
3, as we wanted to show. a

EXAMPLE 48. Let P/Q = 8/11, and assume that a circle map [ satisfying C.1-
C4 has rotation number P/Q. From Propositions 28 and 45 we know that f has an
11-periodic orbit whose lifted cycle is 8,11-ordered. We wish to show that, as is given
by Proposition 47, its symbolic sequence is given by the concatenation of the symbolic
sequences associated with p,q- and p', ¢’ -ordered lifted cycles of periodic orbits with
rotation numbers p/q and p'/q’, respectively, where p/q < p'/q" are the Farey parents
of 8/11.

In order to find the Farey parents of 8/11 one can construct the Farey tree and
locate them as the unique Farey neighbors of 8/11 in the Farey sequence F11. However,
the proof of Proposition 47 gives us a method of finding q and ¢': q is the smallest
number such that IL (F%(zp)) = 21.

In Figure 3.6 we show the 8, 11-ordered lifted cycle (z;) of the periodic orbit with
rotation number 8/11. Starting at zq, the arrows provide the sequence obtained when
iterating zo by F'. Note that, at each iterate, one adds 8 to the subindex. We obtain
that F"(z0) = 256 and 56 = 1 (mod 11). Hence, ¢ =7 and ¢ = 11 — 7 = 4. Using
that 8 =p+p' and p'q — pq’ = 1, we obtain p =5 and p’ = 3:

8 5+3
11 744

We can now construct the sequence x;. We start with o = zo9 and add 5 to the
subindex of x at each iteration: xs; = zg; for 0 < ¢ < 7. This provides the points
2o < x5 < x10 < -+ < T39. By lifting these points (adding multiples of 7 to their
subindices), we obtain a lifted cycle defined in (3.14), which is 5, 3-ordered.
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0 < 2 < s < 2o < oz s < s < B <o <o < 29 < Z10 < 1
o Yo st Y1 T2 T3 Ya T4 T5 Y3 6

1. < oz < oz12 < oz13 <oy < s <z < Z1r < z18 < 219 < oz20 < 221 < 2
T7 Y4 T8 Ys Ty T10 Yo T11 T12 Y7 13

2 < Ze2 < %23 < Fog < Zas < Zge < Zer < Feg < Z29 < Z3o < A1 < 232 <3
T1q Ys T15 Y9 T16 T17 Y10 T18 T19 Y11 T20

3 < &3 < mma < &35 < 236 < 37 < 238 < 239 < 20 < ozl < 2 < Z2a3 < 4

T21 Y12 T2 Y13 23 T24 Y14 T25 26 Y15 Tor

ot

4 < Za < ms < e < zar < w8 < 9 < Zs0 < Zsl < Zs2 < 453 < Zsa <

T28 Y16 T29 Y17 T30 31 Y18 T32 33 Y19 T34
5 < Zs < 36 < &7 < Zs8 < Z50 < Zeo < Z61 < Ze2 < Z63 < 4 < Z6s < 6

T35 Y20 To7 Y21 T30 T31 Y22 T32 L33 Y23 T34

6 < Zee < v < Fes < Zeg < Fro < AT < Atz < Zm3 AT < oz <zt < T
Ty42 Y24 Tyg3 Y25 Tgq Ty Y26 L6 Ta7 Yor Tag

TO< mm < ozg < zrg < Zgp < 21 < 282 < 283 < a4 < 285 < %86 < gt < 8
T49 Yos 50 Y29 T51 T52 Ys0 T53 T54 Ya1 T55

8 < Z8 < 9 < Zoo < 291 < Fo2 < 293 < 294 < %95 < 96 < Zor < Z9g <9

T56 Y32 T57 Y33 T58 T59 Y34 60 Te1 Y35 T2

Fig. 3.6 Lifted cycle of a 8,11-periodic orbit (z;) split into two subsequences, z; and y;, as in the
proof of Proposition 47 (see Example 48 for text).

Next we construct the subsequence y;. Following (3.19), we start with Ypy = y20 =
Z1+pQ = 256- By further iterating, we add p’ at the subindices of yi: Y20+ip = 256+iP
for 0 < i < 4. This leads to the sequence yap < yo3 < --+ < ya9. Finally, by
lifting these points, that is, adding multiples of 4 to their subindices, we obtain the
3, 4-ordered lifted cycle of a periodic orbit with rotation number 3/4.

Note that the next iterate of yo9 = zg0 becomes zgg, which satisfies TI(zgp) = 2o.
Hence, after following the sequence (y;), the lifted cycle (z;) switches back to the
sequence (x;), and the symbolic sequence is repeated.

In the rest of this section we study the rotation number for families of orientation
preserving circle maps; that is, under the variation of the parameter ¢ in condition
C.3, which, by means of the change of variables given in (3.1), is equivalent to the
parameter \ that parametrizes the curve in parameter space mentioned in Theorem 13.

Recalling Proposition 35 and Lemma 36, we already have that, when varying
A from 0 to 1, the rotation number (and hence the n-number) is continuous and
monotonically increases from 0 to 1. In order to show that, moreover, it is a devil’s
staircase, we need to show that, in addition, it is constant for all values of A except
for a Cantor set of zero measure. This will come from the following theorem.

THEOREM 49 (see [34, Theorem 1']). Let f be a continuous monotonic non-
decreasing map of the circle of degree one satisfying
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—lir Jr(1 ) Je(=Hr)ue

Fig. 3.7 (a) Piecewise-smooth map satisfying C.1-C.4. (b) Its inverse.

(i) f is constant on an interval [a,b] and is of class C* outside [a,b];

(i) infygpp (f'(y) > 1.
Let fi be the map defined by f:(y) = f(y) +t, t €]0,1]. Let

E = {t| ft has irrational rotation number} .

Then m(E) = 0, where m denotes Lebesque measure, and furthermore E has zero
Hausdorff dimension.

Generalizations of the previous theorem can be found in [133, 123].

Finally, we show that Theorem 49 extends to a piecewise-smooth system of the
form (2.1) satisfying h.1-h.3 and (i) of Theorem 13 (or an orientation preserving circle
map satisfying C.1-C.4). This will prove that the n-number follows a devil’s staircase.

LEMMA 50. Let f be piecewise-smooth map as in (2.1) satisfying conditions h.1—
h.3 and (i) of Theorem 13, and let f be the orientation preserving circle map obtained
after applying the change of variables (3.1). Then, the set of values of A for which the
map fx has irrational rotation number consists of a Cantor set with zero measure.

Proof. We note that the map f is invertible. Let ¢ be as in (3.1) and define

d(fr(pc)),
(0%) = o(f(—pr))-

Il
hi
[l
\_/‘

Il

Then the inverse f; '(y) is an increasing expanding map with a “hole” for y € [a, b]
(see Figure 3.7(b)). As the trajectories of any point = € [0,1] by f do not reach the
interval [a, b], we can proceed as in the proof of Proposition 39 and complete the map
f; ! with a horizontal part equal to 1 for y € [a,b]. This allows us to consider a map

¢ tofrlod(y) ifye(0,d,
g(y) =<1 ify € [a,b],
ol oftodly) ifye b1l
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y=x
,,,,,,,,, L
a5 Qg a3 ay ap b2§ b3 by
‘ Qi L 1 ‘
2 - !
& 1 1
""" R | !
Ic =
Ir
-

Fig. 4.1 Piecewise-smooth map as in (2.1) satisfying (ii) of Theorem 13 and the sequences defined
n (4.2)—(4.3) The gray box represents the absorbing interval (4.1).

which coincides with f, '(y) for y ¢ (a,b). Let

~v: [0,1] — R?
A= (pe(A), pr(N),

be a parametrization satisfying H.1-H.3 of Theorem 13. Then, the interval [a,b]
smoothly varies from [0, ¢(fz(—pr(0)))] to [¢(fr(ec(1))),1] when A is varied from
A=0to A =1. Let gA(y) be g(y) after applying the reparametrization . Then we
have

ax(y) = goly) + A,

and hence we can apply Theorem 49 and get the result. d

4. Nonorientable Case. The nonorientable (increasing-decreasing) case occurs
under condition (ii) of Theorem 13. In this case, the map (2.1) becomes increasing
for x < 0 and decreasing for = > 0.

As mentioned in sections 1 and 2.3, this situation was discussed in [80, section 3.3]
and proven in full detail in [18]. For completeness, we provide in this section an
overview of this proof.

We first observe (see Figure 4.1) that a map f as in (2.1) satisfying conditions h.1—-
h.3 and (ii) of Theorem 13 is a map on the interval

(4.1) folfr(pc)s pel — [fr(pne), pcl.

We now consider the symbolic itineraries of periodic orbits for a map (4.1) under
the aforementioned conditions. Clearly, when the parameters s and pgr are varied
along the parametrization (2.7) satisfying H.1-H.3, the map (4.1) becomes negative for
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fe Ic fc fe fc
—— / . N [ NN
‘ f “ | \

\ v Al v \ R
— " — "
Aj+1 a; aj-1 fl‘z (l‘l q C‘g
4.—_‘_—’7 """ T T T T
Y ~

! |

\ r ‘

Fig. 4.2 Backward and forward iterates of (0,pc]. fr((0,pc]) (dark segment) is smaller than
F2" (0, ucl) Yn. Therefore, at most one a; can be reached by fr((0,pc]).

x € [0, ug]. Hence, periodic orbits cannot have symbolic itineraries with consecutive
R symbols.

In order to show that the only possible itineraries for periodic orbits are of the
form L"R, we define the sequences of preimages of x = 0 by fr and fr:

(4.2) ap =0, an=f;"(an-1) if n>0,

(4.3) b = fr'(an) if n > no.

Due to the contractiveness of fz and f, we have that

(44) m( an+17an])
m([an, an-1])
m([bn, but1])

m([bp—1,bn])

where m indicates the length of the interval.
Then we have the following lemma.

>1,n>0,

> 1, n > ng,

LEMMA 51. Suppose f is a map of type (2.1) fulfilling conditions h.1-h.3 and (ii)
of Theorem 13. Then there exists at most one a; (equiv., bj) such that a; € fr ((0, pz])

(equiv., b; € (0, ug)).
Proof. Recalling that pz = f£(0), one has (see Figure 4.2)
[aﬂ-i-lv an] = fgl([ana an—l]),
[a1,0] = ([0, pc)).-

Using the property shown in (4.4), one has

m([0, em]) <m(lany1;an])  Vn,

and, since fr is contracting one obtains

m(fr((0, pcl) <m([ant1; an])  Vn.

Therefore, at most one a,, can be located in f((0, uz])- O
The next lemma tells us what symbolic itineraries are possible.

LEMMA 52 (see [18, Lemma 7]). Let f be a piecewise-smooth map as considered
above, and let xy < --- < xpn, x; € [fr(pc), pe], be a periodic orbit. Then If(xg) =
(LMR)®°.
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Fig. 4.3 The interval fr((0,uc)) is split when it returns to the right domain.

The proof of this lemma is in fact an extension of the arguments presented in
[80, section 3.3] and it was provided in full detail in [18]. We repeat it here for
completeness.

Proof. If f has periodic orbit of period n > 2, we necessarily have

fR((Oa ILLL]) N [&n, an—l] 7é (D,

which can arise as a result of one of the following three situations (see Figures 4.2 and
4.3):

S.1. a,_1 € fR((O,/LE]).

S.2. fR((Oauﬂ]) C (anaan—l)'

S.3. an € fr((0, pe))-
If S.1 holds, b,,—1 € (0, uz] and

fz‘,lfR : [bnflaﬂﬁ] — [bnflallfﬁ]a
TR (0,bp—1) — (0,b5-1),

are continuous contracting functions which must have a unique (stable) fixed point.
Therefore, two stable periodic orbits of types £L*R and L7 'R coexist. Note that for
n = 2 this proves also the existence of an LR-periodic orbit.

In the second case (S.2), bp—1 ¢ (0, pg] ([0, pre] C (bp—1,bn)) and

fEfr (0, pc] — (0, pc]

is a continuous contracting function which must also have a unique (stable) fixed
point. In this case, there exists a unique periodic orbit of type L£"R which is the
unique attractor in (0, pz].

Finally, if S.3 holds, replacing n by n — 1 and arguing as in S.1, one has that a
stable periodic orbit of type LR coexists with a stable L1 R-periodic orbit. d

REMARK 53. In contrast to all periodic orbits of type LR with n > 2, the periodic
orbit LR exists not only for ur > 0, but also for ur < 0. In that case, it coexists
with the fized point R (L°R) (see Figure 2.3).

REMARK 54. Note that the transitions between cases S.1, S.2, and S.3 are given
by border collision bifurcations where the respective periodic orbits are created or de-
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stroyed when they collide with the boundary x = 0. This defines the border collision
bifurcation curves shown in Figure 2.3.

REMARK 55. As is known, invariant objects of piecewise-smooth systems do not
necessarily have to be separated by another invariant object. In this case, the coex-
istence of stable periodic objects may also be separated by the discontinuity (and its
preimages).

We focus finally on the bifurcation scenario shown in Figures 2.3-2.4 when the
parameter A of the parametrization (2.7) is varied.

Clearly, the successions a, and b, are continuous functions of the parameter
~. Hence, the transitions between S.1, S.2, and S.3 are as described in the proof of
Lemma 52. That is, assume that for some « S.1 holds; then two periodic orbits of types
LR and L" 'R coexist. Due to conditions H.1-H.3, when decreasing v, pz mono-
tonically decreases to zero, whereas pg increases toward some bounded value. Hence,
an—1 monotonically decreases to zero and, hence, as m([0, z]) < m([an, an-1]), there
exists some value of v for which fr([0,uz]) C (an,an—1) and S.2 holds. Thus, the
L7~ 1R-periodic orbit bifurcates and only a £"R-periodic orbit exists. Arguing simi-
larly, by further decreasing v, S.3 holds and an £"*!R-periodic orbit bifurcates and
coexists with the L™ R-periodic orbit.

As this occurs for all n, this argument proves the bifurcation scenario described
in section 2.3.

5. Some Remarks on Piecewise-Smooth Expanding Maps. Frequently, both
in applications and in theoretical studies, the contracting conditions required in the
previous sections become too restrictive and one needs to deal with discontinuous
maps exhibiting expansivenesses. However, such maps are shown to undergo similar
bifurcations as those described in section 2. Examples can be found in the study of
homoclinic bifurcations, such as the Lorenz system [75, 122, 113, 68, 70, 82] or in
multiscale dynamics [99, 41], but also in power electronics [76, 30, 33, 116, 102, 87,
138, 19], biology [89, 106, 117], or economics [129], among others. Although the results
summarized in Theorem 13 cannot be applied when the map lacks contractiveness,
many of the results presented in sections 3 and 4 are still valid under the assumption
of weak enough expansion. In this section we review possible scenarios involving the
loss of contractiveness; that is, we focus on maps as in (2.1) satisfying

W1 f£(0) = fr(0) =0,
h'.2. 0 < (fz(2)), z € (—0,0),
h.3. 0 <|(fr(z))|, = € (0,00),
where fr and fr may be expanding in all or part of their domains.

As before, we now distinguish between the orientable ((fgr(x))" > 0) and nonori-

entable ((fr(z)) < 0) cases.

5.1. Orientable Case. Let us assume that conditions h’.1-h’.3 hold with (fr(z))’
> 0. We focus on the case pr, ug > 0. We first note that, as long as

(5.1) fo(—ur) > frpc),

the piecewise-smooth map f is still invertible. Hence, as in the contractive case, it can
be reduced to a circle map of type (3.2) satisfying conditions C.1-C.4 by means of the
smooth change of variables (3.1). Therefore, all the results in section 3 requiring only
that the lift of the map is strictly increasing (which is given by conditions C.1-C.4)
also hold as long as (5.1) is fulfilled. That is, recalling that A parametrizes the curves
in (2.7), we find that, for any A € [0, 1] such that (5.1) is satisfied, we have that
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(i) the rotation number (p) given in Definition 26 is well defined, unique, and

increasing as a function of A, and

(ii) if p = p/q, with p,q coprime, then f possesses a p, g-ordered periodic orbit

whose symbolic sequence belongs to the Farey tree of symbolic sequences.
Note that (ii) is a consequence of Proposition 28, which requires only conditions C.1-
C.4. However, as noted in Remark 34, when the maps f: and fr exhibit expansive-
ness, this periodic orbit might be not only repelling, but also nonunique. However,
even in this case, all existing periodic orbits are p, g-ordered, as Proposition 38 still
holds, and therefore they all must have the same symbolic dynamics.

Regarding the dynamics for p € R\Q, Proposition 39 does not hold if f. or fr
are expanding. The main obstacle is due to the fact that Corollary 3.3 of [133] cannot
be applied to show that w(f) is a Cantor set (see the proof of Proposition 39). As a
consequence, one needs additional conditions to determine whether w(f) is a Cantor
set or the whole circle.

In contrast to the purely contractive case, when f, or fr are expanding, the rota-
tion number no longer necessaily follows a devil’s staircase. Without the contracting
assumption Theorem 49 does not hold and hence the set of values of A for which the
piecewise-smooth map does not possess any periodic orbit (the rotation number of the
associated circle map is irrational) does not necessarily have zero measure. However,
p() is still a nondecreasing continuous function.

As stated above, the crucial property that keeps most of the results shown in
section 3 valid even when the map is expansive is the invertibility condition (5.1).
When this is lost, the corresponding lift exhibits negative gaps and is not an increasing
map. As a consequence, the rotation number becomes nonunique. Instead, one needs
to deal with rotation intervals, coexistence of periodic orbits with different rotation
numbers and symbolic dynamics, and positive entropy. Although there exist many
results in the literature (see, for example, [2, 4, 3, 1, 5, 6, 86]), a precise description
of the bifurcation scenarios becomes difficult under general assumptions that can be
difficult to state.

5.2. Nonorientable Case. Let us now consider a class of maps as in (2.1) satis-
fying
W1, f2(0) = fr(0) =0,
h".2. 0 < (fe(x)), z € (—00,0),
h".3. 0 > |(fr(x))], z € (0,00),
where fr and fgr may be expanding in all or part of their domains.

Unlike in the orientable case, such a map fulfilling conditions h”.1-h".3 is always
invertible for u,z, ugr > 0. However, even in the linear case, when the map f or fr is
expanding, the bifurcation scenario may change significantly (see, for example, [15]).
On one hand, one may lose pairwise uniqueness of periodic orbits, as this relies on
Brower’s fixed point theorem needing contractiveness. Hence, expansiveness may lead
to the absence of periodic orbits or to the existence of several unstable orbits. On the
other hand, whenever they exist, symbolic sequences associated with periodic orbits
may be very different. Obviously, provided that ug > 0, fr(z) < 0if z > 0 and hence
no symbolic sequence can contain two consecutive R’s. Then, symbolic sequences may
contain blocks of the form £L"RL™, with n # m. Numerical studies have also shown
evidence of the existence of chaotic attractors, whose associated symbolic dynamics
are similar [12, 13, 14].

However, if fr is expansive but f, is not, it may happen that, for ps > 0
smaller than a certain quantity (which may depend on pr), the number of iterations
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performed in the negative domain might be large enough to compensate for the ex-
panding dynamics of fgr. This is because the smaller pz > 0, the larger the number
of iterations needed to return to the right domain. Hence, when this occurs, a period
incrementing bifurcation takes place but only involves periodic orbits of type LR
and L"T'R with n large enough, which are attracting despite fr being expanding.

6. Maximin Itineraries and Piecewise-Smooth Maps in R™.

6.1. Introduction. Often, due to the complexity of real applications, one-dimen-
sional maps are not enough and one needs to consider maps in higher dimensions. Ex-
amples of two- (or higher-) dimensional piecewise-smooth maps are found as Poincaré
(or stroboscopic) maps in nonautonomous mechanical systems [37, 109, 44], but
they are also found in power electronics [45, 29, 114, 67, 138, 7], control theory
[46, 135, 137, 51], mathematical neuroscience or biology [126, 127, 57, 103, 125, 117].
Piecewise-smooth maps in higher dimensions are also obtained when studying Filip-
pov flows in R™ (n > 3) [49]; they appear as half-return Poincaré maps and become
discontinuous close to grazing and Hopf bifurcations [56, 108, 94, 112, 39, 38].

As occurs with homoclinic bifurcations for smooth flows (see sections 1, 2.2,
and 7.1.1 for references), symbolic dynamics of piecewise-smooth discontinuous maps
in R™ may help us to determine the number of loops performed by periodic orbits
in different zones of the state space [108, 38]. There exist some general results for
piecewise-smooth continuous maps on the plane [120, 119, 55] (see [118] for a recent
survey). Unfortunately, although some efforts have been made to exhaustively in-
vestigate specific systems [42, 69, 29, 93, 48, 54, 57, 7] there exist very few items of
literature providing general results on piecewise-smooth discontinuous maps in higher
dimensions.

6.2. Maximin/Minimax Properties of Symbolic Sequences. We continue at the
symbolic level by defining the mazimin/minimaz properties of symbolic sequences in
Whp.q-

DEFINITION 56. We say that a symbolic sequence x € W, 4 is
e mazimin if

0<k<q YEW,,q \0<k<q

min (0*(x)) = max (min (ak(y))>,
o minimaz if

k . k
max (0%(x)) = min | max (o .
0<k<gq ( ( )) yEW5p q <O<k<q ( (Y))>

As was proven in [32, 61] using different techniques, the maximin and minimax prop-
erties are equivalent; that is, one has the following theorem.

THEOREM 57 (see [32, 61]). Let x € W, 4. Then x is mazimin if and only if it is
minimaz.

EXAMPLE 58. Let n = 2/5. Up to cyclic permutations, there exist only two peri-
odic sequences in Wy 5, which are represented by the minimal and mazimal blocks

L3R? = min (cr (E?’RZ)) ,

0<k<q

max (U (EBRZ))

0<k<q

R2£3 _ 02(£3R2)
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and
LPRLR = min (o (L*RLR)),
0<k<gq
RLRL? = 0*(L*RLR) = max (o (L*RLR)) .
0<k<gq
Then, as

L2RLR > L3R?,
RLRL? < R2L3,

the sequence L2RLR is minimax and mazimin.

The following result tells us that all the sequences shown in the Farey tree of sym-
bolic sequences (see Figure 3.1(b)) (given by consecutive concatenation) are maximin
(minimax).

PROPOSITION 59 (see [59, Proposition I11.2.4-3]). Let p/q < p'/q’ be the irre-
ducible form of two Farey neighbors, and let x> € Wy 4 and y>*° € Wy o be two
mazximin sequences, with x € {L,R}? and y € {L,R}* minimal blocks. Then, the
sequences given by the concatenation of these two blocks (xy)™ € Wipip)/(q+q) 15
maziman.

We provide a sketch of the proof given in [59].

Proof. One first sees that x and y belong to the same domain of some deflation,
i.e., a map which collapses blocks contained in sequences as follows:

LR — R,
™=
LR — L.
Then one proceeds by induction using that 7(x) and 7(y) are maximin, as is 7~ !(xy).
See [59] for more details. 0

The following result tells us that maximin symbolic sequences are also well-ordered
sequences (see Definition 43).

THEOREM 60 (see [61]). Let x € W, 4. Then x is mazimin if and only if it is
P, q-ordered.

The previous result was also proven in [32] for the one-dimensional case using
endomorphisms of the circle. Moreover, note that for the one-dimensional case we also
already have such a result using the Farey tree of symbolic sequences and Ptoposition
47. However, the previous theorem was proven using only symbolic properties.

6.3. Quasi-contractions and Piecewise-Smooth Maps in R™. In this section
we review some results for piecewise-smooth maps in R™ regarding their symbolic
properties.

We consider maps defined in some suitable open set U C R™,

f:U—U,
of the following form. Let

h:R" —R
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be some differentiable function. We then consider a switching manifold > C U as
Y =h"10)NT,
which splits U into two subsets
Er={reU|h(x) <0} and FEgr ={reU|h(x)>0}.
Then we write such maps as

f:ELUER—>U,

defined as

- fe(x) ifxeEg,
(6-1) flw) = {fn(a:) if x € Ex,
where

fe:R" —R" and fr:R" —R"

are two smooth maps.
Note that (6.1) does not define f in ¥. Similarly, as for the one-dimensional case,
we consider that f is two-valued for x € X:

f(E) = fe(B) U fr(¥).

Given x € U one can also define its symbolic itinerary by f as in (2.2) by considering
the encoding

62) (o) = {R if z € Eg,

)£ ifzeEe.

Note that if x is the symbolic sequence associated with a periodic orbit of a map
of type (6.1), then it still makes sense to consider its n-number, n(x), as defined in
(2.6). However, we will not provide a definition of the rotation number for such maps,
although the classical definition through the lift for the one-dimensional case (see
Definition 26) could be extended by considering f as a map onto an n-dimensional
cylinder (see section 8 for a discussion).

Below we will assume that f is a contraction (or that f contracts), which means
that there will exist some 0 < k < 1 such that, for any P,Q € U, we have

(6-3) 1F(P) = FQI < KlP = Q]|

We then recover the result presented by Gambaudo and Tresser in [63], which states
the possible number of periodic orbits and their possible symbolic properties.

THEOREM 61 (see [63]). Let f be a piecewise-smooth map as defined above satis-
fying
1. fM(X)NX =0 for alln >0,
2. f contracts.
Then
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(i) f admits 0, 1, or 2 periodic orbits;
(ii) any periodic orbit of f has an itinerary which is maximin; and
(iii) of f has two periodic orbits, then their itineraries belong to Wy 4 and Wy o
and p/q and p'/q' are Farey neighbors.

Before discussing it, we remark that the theorem above was indeed stated for a
more general type of piecewise-defined map called a quasi-contraction. For complete-
ness we provide such a definition in its original form.

DEFINITION 62 (quasi-contraction). Let (Eg,do) and (E1,d1) be two metric spaces
and Fy € Ey and Fy € Ey two points. Then a map

(64) f: EgUE, — EyUE;

is a quasi-contraction if there exists 0 < k < 1 such that for any (i,j) € {0, 1}2,
VP,Q e f~YE;)NE;, YR e f~Y(E1_;) N E;, one has

(i) d; (f(P), f(Q)) < kdi (P,Q),

(i) d; (f(P), F) + dij (f(R), F1—;) < kdi(P, R).

Despite the arbitrary dimension of the metric spaces E;, Theorem 61 was stated
while bearing in mind the one-dimensional case. This is why the two points F; were
considered instead of manifolds. If considering Ey = (—o00,0] and E; = [0,00), F;
would be chosen to coincide with the boundary: Fy = F; = 0 and we would recover
the type of one-dimensional map considered in (2.1).

Theorem 61 was proved in [60] (Theorem A) for f a quasi-contraction with con-
stant & satisfying 0 < k < 1/2. The version given in [63] not only extends to the case
of quasi-contractions with 0 < k& < 1, but it also provides more information; we give
here a mutilated version which is sufficient for our purposes. It can be easily seen that
both proofs also hold when one replaces the points F; by closed sets whose iterates
are all kept connected. This is why we required condition 1 in Theorem 61 instead
of considering general quasi-contractions. Finally, note that if f is a contraction in
terms of (6.3), then it is automatically a quasi-contraction when choosing Ey = Er,
E, = FEg, and the switching manifold ¥ instead of the points F; and using

d(f(P),%) = mind (z, f(P))
reEX
(similarly for f(Q)). Hence, conditions 1 and 2 in Theorem 61 replace the quasi-
contracting condition for the particular case of the type of piecewise-smooth map
that we are considering here.

Note that, obviously, Theorem 61 also holds when considering f a quasi-contraction
for some Fy = F} € X. However, this becomes much more restrictive than conditions
1 and 2.

We now analyze Theorem 61 analogously with the results summarized in section 2
for the one-dimensional case.

We first note that the case in which only a periodic orbit exists is analogous to
the orientation preserving case for one-dimensional maps. Although this is not stated
in the result itself, it comes from the proof provided in [60, 63]. By Proposition 59,
such a periodic orbit must have a symbolic sequence which belongs to the Farey tree
of symbolic sequences (see Figure 3.1(b)).

As also occurs for the one-dimensional case, when the map is nonorientable one
finds the possibility of coexistence between two periodic orbits. As before, this comes
from the proof provided in [60, 63]. Let S and A be the symbolic sequences of those



266 ALBERT GRANADOS, LLUIS ALSEDA, AND MACIE] KRUPA

periodic orbits. From (iii) (8)* € W, 4 and (A)>* € W o with p/q and p’/q’ Farey
neighbors in some Farey sequence F,, (see Definition 15). Assume that ¢’ > ¢; then
they are neighbors at the Farey sequence of order ¢’ and p/q is a Farey parent of p’/q’.
Then, if p/q > p’/q’, by Proposition 47 we know that A = af3, where « is the Farey
sequence of the other Farey parent of p’/¢’. Then, by going down through the Farey
tree of symbolic sequence, we find two sequences, ¢ and ~, such that 8 = ¢y and
A = 0"y for some n > 0.

Then, by considering the iterates of the maps f, and fr given by the sequences
o and v (see the example below), the periodic orbits of the original map collapse to
periodic orbits of the form £"*1R and £L"R (or LR"! and LR") for the composite
map, which corresponds to the coexistence of periodic orbits given at the period
incrementing structure.

EXAMPLE 63. Assume that we are in the situation described in Theorem 61(iii)
with two periodic orbits with symbolic sequences in W3 g and Wa 5 coexisting. From
section 3.4 we know that, with the notation above, these symbolic sequences are A =
(/3273)2 LR and B = L2RLR. By going down through the tree, we find o = 0 = L2R
and v = LR. Then, for two properly chosen sets E; and Ex (see below for more
details), the map

f(a:) _ {fg(x) = fz ofr(z) ifzxe Er,
fR(x) = frofr(z) ifze Fr

possesses two periodic orbits with symbolic sequences L>*R and LR, which correspond
to those predicted by the period incrementing bifurcation structure.

Note that the sets Ey and Exr need to be properly found. This can be done by
noting that the iterates by fg or fR provide the boundaries of the domains of attraction
between the points of the periodic orbits. See [26] and [25] for explicit examples.

Finally, the third case for which f has no periodic orbit corresponds to quasi-
periodic dynamics. In this case f possesses an attracting Cantor set (see [63]).

REMARK 64. Theorem 61 does not provide any information about the bifurcation
structures that may appear when adding parameters to f. As will be discussed in
section 8, similar structures to the period adding structure may appear, although it is
not guaranteed that all periodic orbits in the tree may exist for some parameter.

6.4. Maximin Approach for the One-Dimensional Case. In this section we
present an alternative path to proving the period adding structure for one-dimensional
piecewise-smooth maps. More precisely, we show that one can use Theorem 61 after
Gambaudo et al. to identify sequences in the Farey tree of symbolic sequences with
the itineraries of one-dimensional orientation preserving circle maps. By using the
concept of maximin sequences instead of p, g-ordered sequences (see Definition 43),
this approach provides stronger results than the one presented in section 3.4, as they
give more information about the symbolic sequences. In particular, given the rotation
number, p/q, the maximin property enables us to obtain the proper symbolic itinerary
of a periodic orbit without constructing the whole Farey tree of symbolic sequences
up to level ¢. Instead, one needs to find the symbolic sequence in W, , that verifies
the maximin/minimax condition (see Definition 56).

However, a downside to these advantages is the requirement for contraction, since,
as was remarked in section 5, many of the results gained through circle maps (see
sections 3.3 and 3.4) also hold for expansive maps. Moreover, the proof of Theorem 61,
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especially for 1/2 < k < 1 (see [63]), is significantly more difficult than those in
section 3.4.

This alternative proof is as follows. From Proposition 28 we obtain that, under
conditions C.1-C.4, if the rotation number is rational, p/q, then a periodic orbit
exists. When adding the assumption of contraction, Theorem 61 holds and, due to
uniqueness of the rotation number, it tells us that a unique periodic orbit must exist;
moreover, its symbolic itinerary is maximin. Then, from Proposition 59, we get that
its symbolic sequence belongs to the Farey tree of symbolic sequences. Once we find
that the symbolic itineraries of orientation preserving circle maps belong to the Farey
tree of symbolic sequences, we proceed as in section 3.4 to study the bifurcation
structure when the parameters c or A are varied, in order to prove (i) in Theorem 13.

7. Applications. In section 7.1 we present examples for which Theorem 13 pro-
vides a full description of their dynamics.

In the first example (section 7.1.1), we will focus on the codimension-two bifur-
cation given by the simultaneous collision of two periodic orbits of a one-dimensional
discontinuous map with the boundary. By applying Theorem 13 we generalize the
results obtained in [61, 60] by providing a precise description of the bifurcation sce-
nario.

In the second example (section 7.1.2) we deal with a system of control theory.
We consider a first order system with a stable equilibrium point. In order to stabilize
this system at another value, we perform a nonsmooth control action based on relays,
which is a well-known technique in engineering control, known as sliding-mode control.
Theorem 13 holds and describes the dynamics of this system.

In section 7.1.3 we consider a generic integrate-and-fire system subject to a peri-
odic forcing. Such a system consists of a hybrid model widely used in neuroscience.
We show how Theorem 13 can be applied to describe not only its dynamics, but
also relevant biological properties such as the firing-rate under parameter variation.
There exist in the literature other examples of neuron models from which one de-
rives a piecewise-smooth discontinuous map such that Theorem 13 (ii) holds; see, for
example, [84, 127].

Section 7.2 is devoted to illustrating the results revisited in section 6 for higher-
dimensional piecewise-smooth maps. We first consider a higher order system con-
trolled with relays (section 7.2.1). This represents an extension of the example shown
in section 7.1.2.

In section 7.2.2 we consider a ZAD-controlled DC-DC boost converter. We show
how symbolic dynamics given by the maximin periodic orbits describe how the satu-
ration of a pulse width modulation process is distributed along periodic cycles.

7.1. One-Dimensional Examples.

7.1.1. Codimension-Two Border Collision Bifurcations. Our first example con-
sists of a generic dynamical system given by a piecewise-smooth map for which, under
variation of two parameters, two periodic orbits transversally collide with the bound-
ary. In two-dimensional parameter space, this is given by the crossing of two border
collision bifurcation curves and is hence a codimension-two bifurcation point. Below
we will show that the map (2.1) is a normal form for such a bifurcation, and hence
the dynamics are given by Theorem 13.

This bifurcation codimension-two bifurcation was described as a gluing bifurca-
tion [61, 60] when studying figure of eight or butterfly homoclinic bifurcations for
three-dimensional flows. Assuming the existence of a strong stable direction it is
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possible to reduce the dynamics near a homoclinic bifurcation to a two-dimensional
system. Then, one considers a first-return Poincaré map, which turns out to be a
one-dimensional discontinuous map of the form given in (2.1) (see [11, 122] for more
details). Depending on the orientability of the stable and unstable manifolds, this
map exhibits different configurations with respect to its monotonicity near the dis-
continuity (see [66, 80]), leading to the cases (i)—(iv) of Theorem 16 and Remark 14.

Later, in the context of simulations of piecewise-smooth dynamical systems, this
codimension-two bifurcation was rediscovered and called a big bang bifurcation [22] as,
depending on the monotonicity properties of the map, it may involve the emergence of
an infinite number of bifurcation curves from the codimension-two bifurcation point
in the parameter space. Such points organize the dynamics around them and have
been frequently reported in simulations of piecewise-smooth maps [20, 21, 23, 24, 17,
27, 28, 65, 78].

From the piecewise-smooth perspective, the bifurcation scenarios that appear
around such a codimension-two bifurcation point have been recently reconsidered
in [64]. There, the authors distinguish between cases (i) and (ii) of Theorem 13. For
the period adding structure (case (i)) the authors use renormalization arguments to
demonstrate the existence of periodic orbits nested between regions in the parameter
space. However, the proof is not complete, as it is not shown that this occurs only for
regions containing periodic orbits with Farey neighbors rotation numbers, which is
the main result. Regarding period incrementing (case (ii)), the authors of [64] repeat
the proof provided in [18] and in section 4.

We now start with the example. We will show that, under nondegeneracy con-
ditions, after collapsing the colliding periodic orbits to fixed points and performing
a reparametrization, such a bifurcation can be reduced to the study of a map of the
form of (2.1) under variation of the parameters us and pg.

Assume that we have a dynamical system given by

(71) Tn+1 = f(x’n.)v
with

(72) f(ZII) _ { fg(x;a,b) if r < 0,

fr(z;a,b) if x>0,

where a,b € R are two parameters.
Assume that system (7.1) possesses two periodic orbits (zo,...,2,—1) and

(Yo, -+, Ym—1), Ti,y; € R, satisfying
flxi)) =241, 0<i<n—1,
f(Zn-1) = 20

and

flyi) = yig1, 0<i<m—1,
f(ymfl) = Yo-

Note that the periodic orbits are indexed by dynamical and not spatial order, which
implies that we do not necessarily have z; < x;41 and y; < y;+1-

Assume that these periodic orbits undergo right and left border collision bifurca-
tions at two curves, b = &;(a) and b = &,(a), in the parameter space (a,b), respec-
tively; i.e., there exist unique integers k, € {0,...,n —1} and k, € {0,...,m — 1}
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such that, for any a € R,

lim x, =07,
b—&y (a)t

: _ ot
(e =0
Assume that these two curves intersect transversally at some point (a*,b*). In order
to write the map (7.2) in the form of (2.1) for parameter values near (a*,b*) we
first need to consider a higher iterate of f so that these periodic orbits become fixed
points. To this end, let x = (x1,...,%,) € {£,R}" and y = (y1,...,ym) € {L,R}"
be symbolic sequences such that

Next, consider the iterates

fE = fx1 Ofx2 O"'Ofxn($)7
fR = fy1 Ofy2 O"'Of}’m(x)

and the map

- B fo(zya,b) if 2 <0,
fa;a,0) = {fR(x;a,b) if x> 0.

Note that one can always find proper shifts of the sequences x and y such that the
domains of f; and fr become x < 0 and x > 0, respectively. Indeed, this occurs
when the sequences x and y start with the points a2y, and y,, respectively. See [26]
and [25] for explicit examples.

These compositions collapse the periodic orbits of the maps f, and fr to fixed
points of fr and fr, respectively. There then exists a neighborhood (a*,b*) € U C R?
which is split into four subsets in which f has two fixed points, a unique positive fixed
point, a unique negative fixed point, and no fixed points, respectively. These fixed
points undergo simultaneous border collision bifurcations at (a,b) = (a*,b*) in such
a way that the map f becomes continuous at = 0 for these parameter values.

We now perform a reparametrization along the curves &, and §,. The nondegen-
eracy conditions given by their transversal intersection tell us that, to first order, the
new parameters will be equivalent to the offset parameters u, and pur of the general
map given in (2.1). This reparametrization is given by

b R? N R2,
(e pr) +— (@ + pe + pr. (@ + pe) + &y (a* + ur))

which maps the axes ps = 0 and ugr = 0 to the bifurcation curves (a,&,(a)) and
(a,&y(a)), respectively. Expanding in powers of z, pz, and pg around (z, iz, pr) =

(0,0,0), we obtain
Jiﬂ(% ¢(H£7#R)) = Jiﬂ(l’; ¢(0a 0))
' < R )
f‘::i% #

+ Dyupopr fro (@ 0(pc, pr))
+ O(pew, IR, s He iR, T2, B, R ),
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Dypoyr (JZE(CC;QS(N&MR)))' 2::00 =Dy, ux (f(0§¢(MEaMR)))‘ 57£zi%
o -
= (% £(07¢(:U“»Cau73))7
o
ali—R ,C(O;Qb(ﬂlsvmz)))‘ oo
0 F(0; iz, 1) =0 (01 b1, 0o o
a'u/; ) He, WR | Lﬁi% 8#[, L\Y, K, pe=0 He
+ O(:U“?Ca ,LL%, MLMR)a
O 5(0; b(yac ) S R OO I
3#73 3 MLy R ‘57L3i(l)) - a,uR L\Y, 07/1'72 KR
= [pr=0

Proceeding similarly for fzr we find that there exist constants dz,dr € R such that
the map f can be written, close to (z, ucz, ur) = (0,0,0), as

_ Scie + fo(z;a*,b*) + hoo.t.,
7.3 T, = ~ v
(73) @i e, pr) { Srur + frx;a*,b*) + h.o.t.,

where h.o.t. = O(ugx,mgx,ugmg,u%,u%). Hence, taking d,pc and dgur as new
parameters, the first order terms of the map f given in (7.3) are of the form given in
map (2.1) and satisfy condition h.1.

Finally, if the two periodic orbits (zo, ..., zn—1) and (yo, - . ., Ym—1) are attracting,
the maps f, and fr become contracting near x = 0. This implies that conditions H.1-
H.3 are satisfied and Theorem 13 can be applied to system (7.3) for o,y L and ogur
small. Hence, depending on the signs of (f2)'(07;a*,b*) and (fr)'(0F; a*,b*), we will
obtain situations (i)—(iv) of Theorem 13 and Remark 14.

The periodic orbits of the original map f given in (7.2) are obtained from those
of f given by Theorem 13 by replacing each point x; with

Ty — (xiﬂfxl(xi)7f?(2 o fx1(xi)7 .. '7fxn ©---0 fx1(xi)) if T < 07
Tr; — (xiafy1($i)7fy2 o f}ﬂ(mi)a .. 'afym ©-:--0 f}ﬂ(ml)) if Ty > 0.

The corresponding symbolic dynamics for each periodic orbit of the map f sequence
will be obtained by replacing

L — x,
R—Yy.

7.1.2. First Order Sliding-Mode Controlled System with Relays. In our next
example we consider a first order one-dimensional system,?

(7.4) y=f),

2In this section we abuse notation and use f to refer to a field rather than a map.
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%@ Golg)—sl ZOHFY5! £(y) Y

Fig. 7.1 Schematic representation of the control strategy based on sliding and relays.

such that f is monotonically decreasing and has a simple zero at the origin, f(0) =0,
which is a stable equilibrium point of system (7.4). We generalize the results presented
in [50] for a linear system and in [51] for second order linear system.

We wish to stabilize system (7.4) at a new equilibrium point y* by performing a
control action u(t,y):

(7.5) y=[fly) +ult,y)

Obviously, as f is monotonically decreasing, one can always choose u constant (open
loop control) such that f(y*)+u = 0. However, if u is chosen to depend on the current
value of the system, y (closed loop control), then such a control action will be robust
to small perturbations and inaccuracies of the modeling. The type of control that we
will consider is based on the sliding-mode. This consists of performing a particular
action when y > y* and another action otherwise, so that solutions are “pushed”
toward y*. In a hardware setting this is implemented by means of relays. The term
sliding comes from the generalization to higher dimensions, y € R™. In this case, one
defines a surface o(y) = 0 and the desired behavior consists of a sliding motion along
this surface. To achieve this, one acts similarly depending on whether o(y) > 0 or
o(y) < 0.

In addition, we will also assume that u depends on ¢, as we will perform a periodic
sampling in order to discretize the system and use a digital control.

Altogether, we will show that the dynamics of such a system are given by a
piecewise-smooth map of the form (2.1) satisfying h.1-h.3. Hence, Theorem 13 can
be applied to accurately describe the dynamics of system (7.5).

We now describe how the control action w is defined and how we derive the
piecewise-smooth map.

The control is schematically illustrated in Figure 7.1. As one can see, this is a
closed loop system, whose input is the desired new equilibrium y*. The error y — y*
becomes the input of a controller represented by the module G.. In this work we will
assume a proportional control only. Indeed, there will be no loss of generality if we set
its gain equal to 1 (it does not perform any action), provided that the next module,
the relay, will also have some tunable gain.

The output of the controller is pushed to a relay of gain k. This means that,
depending on the sign of its input, the relay will set its output to k& or —k depending
on whether y — y* > 0 or y — y*, respectively.

The parameter T is the sampling period, which digitalizes the system. At every
time T' the switch closes and provides a new sample to the ZOH (zero order hold)
block. This block holds the received value until it is changed at the next sampling.
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The input of the module f(y) thus becomes a piecewise-constant function:

(76) ult) = { —k ify(nT)—y* <0,

k ity(nT)—y* >0

for t € [nT, (n+ 1)T).

In order to obtain stable sliding motion we require f(y*)+k < 0 and f(y*)—k > 0;
that is, we require the field (7.5) to point toward y*. Note that by imposing the
opposite requirement one obtains unstable sliding, as both fields point in the opposite
direction to y* This condition can be generalized to higher dimensions in terms of the
so-called equivalent control and Lie derivatives (see [131] for details). In our case, this
implies that necessarily £ < 0, although note that this is not a sufficient condition.

The fact that the variable y is periodically sampled suggests that the dynamics
of system (7.5) with u given by (7.6) can be better represented by a map

Yn+1 = P(yn),

where yr = y(nT) is the value of y at the nth sample, and P is the stroboscopic
(time-T" return map) of system (7.5), (7.6). It becomes the piecewise-smooth map

Ply) = Pr(y) == o(T;y; k) ify <y",
Pr(y) =o(T;y:k) ify>y",

where o(t; y; k), satisfying ¢(0;y; k) = y, is the flow associated with the system ¢ =
f(y)+k. Note that P(y) is a smooth map as regular as the flow ¢ if y > y* or y < y*,
and it is discontinuous at y = y* if k # 0.

Due to the monotonicity of f the maps Py and Pr are contracting for y € R.
Moreover, they are both increasing (they preserve orientation), as they are given by
integration of an autonomous differential equation. Finally, if & < 0 is such that
the sliding condition is satisfied, we find that P.(y*) > y* and Pr(y*) < y*, and P
undergoes a negative gap at y = y*. Due to the monotonicity of f, this will occur for
any k < 0 such that |k| is large enough. Let us now fix £ < 0 and study the dynamics
of the system under variation of the parameter y*, the desired output. If |k| is large
enough such that the sliding condition is satisfied, then the attracting fixed points y,
and yr of P, and Pg, respectively, are virtual:

yr <y" <uyc.

Therefore, when y* is varied, these fixed points may undergo border collision bifurca-
tions when

*

yr(kr) = y*,
yc(ke) =y™

After applying the change of variables z — y — y*, the one-parameter family of maps
P,-(z) := P(z+y*) — y* is in the class of maps given by applying the reparametriza-
tion (2.7) to the piecewise-smooth map (2.1) satisfying (i) of Theorem 13. Hence,
when varying y* from yr to y,, one observes periodic orbits following the period
adding structure.
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As this occurs for any k < 0, if y* is close enough to the equilibrium point of
system (7.4), y = 0, the origin of the parameter space (y*, k) represents a codimension-
two bifurcation point. This is shown in Figure 7.2 for the linear system

fly) =ay

with a < 0. The bifurcation curves shown in Figure 7.2(a) are straight lines due to
the linearity of the system.

1 . . — 20 ; ; ;
YR =1 A=y

10} - - -

=
T
|
|
|
|
1

Fig. 7.2 (a) Codimension-two bifurcation point of the adding type for the system f(y) = —0.2y
and T = 0.1. The fized points y; are labeled in the regions where they are feasible, and, as
dashed lines, the curves where they undergo border collision bifurcation. In (b) we show the
periods p of the periodic orbits found along the pointed curve in (a), which is parametrized
by the angle \.

The parameter region where one finds the period adding structure is the one for
which the system performs the proper tracking. Its asymptotic dynamics consists of
periodic orbits bouncing around the desired equilibrium point whose amplitude can be
made arbitrarily small by choosing T small enough. For any chosen y*, there exists
a maximal value of k for which the system performs tracking. However, although
for larger values of k the system oscillates between the desired values y*, not only
the amplitude of the periodic motion grows, but also its symbolic dynamics, which
can be modified by properly tuning k such that a certain behavior is achieved (or
avoided). For example, one may wish to minimize the time for which the system’s
output exceeds y*, and hence one may choose symbolic sequences with low rotation
number.

7.1.3. Hybrid Systems in Biology. In this example we consider a generalization
of an integrate-and-fire system, a widely used neuron model. It consists of a hybrid
system given by?3

(7.7) &= f(x),

f € C>=(R), subject to the reset condition

(7.8) r=0—2=0;

that is, whenever the variable z reaches a certain threshold 6, it is reset to a certain

3As in section 7.1.2, in this section we abuse notation and use f to refer to a field rather than a
map.
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value, which we assume to be x = 0. This emulates a spike of a neuron (action
potential).

Typically, the dynamics of system (7.7)—(7.8) are studied by means of the so-
called firing map [89], which is a Poincaré map onto the threshold = 6. However,
when system (7.7) is periodically forced, this map is not optimal for obtaining general
results, as one has to explicitly compute the time when spikes occur.

In this example we present the results reported in [74], where it was shown that,
when a periodic forcing is considered, it is more convenient to study the system by
means of the stroboscopic map (time-T" return map, with 7" the period of the forcing).

Following [74], in this example we periodically force system (7.7) by means of a
square wave function, which models a pulsatile stimulus of a neuron. That is, we
consider the system

(7.9) = f(x)+I(), =zeR,
with f(z) € C*°(R) and I(t) the T-periodic function

A ifte (nT,nT +dT],
I(t):{ ift € (nT,nT +dT]

7.10
(7.10) 0 ifte (nT +dT,(n+1)T),

where A > 0 and 0 < d < 1 is the so-called duty cycle. We are interested in the
bifurcation structure in the parameter space given by the amplitude of the pulse, A,
and its duty cycle, d. We refer the reader to [73] for the study of the bifurcation
structures in this parameter space under frequency variation of the input, 1/7.

Let us assume that system (7.7) satisfies the following conditions:

A.1. Tt possesses an attracting equilibrium point

0<z<6.

A.2. f(x) is a monotonic decreasing function in [0, 4]:

f(x) <0, z€l0,0].

Note that conditions A.1-A.2 guarantee that spikes can only occur when the pulse is
active (I = A) with A large enough; otherwise, when the pulse is off, trajectories are
attracted by the equilibrium point Z.

As mentioned above, in contrast to typical approaches using the firing map, we
use the stroboscopic map

s: [0,0) —  [0,0),

(7.11) to s &(T:z0),

where ¢(¢; o) is the solution of system (7.8)—(7.10) with initial condition ¢(0;xg) =
zo. Note that the flow ¢ is well defined, although it is discontinuous when spikes
occur. The stroboscopic map s is a piecewise-smooth map. To see this, we define the
sets

Sp = {xo € [0,0) s.t. ¢(t; o) reaches the threshold {x = 60}
(7.12)
ntimesforOﬁtﬁT},nEO.

When restricted to S,,, the map s becomes a concatenation of maps consisting of
integrating the system & = f(z) + A and performing resets for ¢ € [0,dT], and then
integrating the system @ = f(z) for t € (dT,T]. Recall that, as mentioned above,
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Fig. 7.3 (a) The trajectories of system (7.8)—(7.10). Dashed line: trajectory with X3 as initial
condition. Thick line: trajectory with x3 > X3 as initial condition, which spikes three
times. Normal line: trajectory with x2 < X3 as initial condition, which spikes two times.
(b) The stroboscopic map, continuity at © = X3.

no resets can occur for ¢t € (dT,T). Hence, s is smooth in the interior of S, as it is
given by a certain composition of smooth maps; however, s is discontinuous at the
boundaries of S,,, because of the following fact. Let us define ¥,, € S,, as the initial
condition that leads to a trajectory exhibiting its nth spike precisely when the pulse
is deactivated:

(b(dT, En) =0.

Note that, as the flow ¢(¢; o) of system (7.8)—(7.10) is well defined if it exists, such
an initial condition is unique and can only exist for certain n. Notice also that, if
there exists 3,, € (0,0), then points above ¥,, exhibit n spikes, whereas points below
exhibit n — 1 spikes (see Figure 7.3).

As a consequence, the map s undergoes at most one discontinuity, at x = 3,,, and
points to its left and right exhibit n» — 1 and n spikes, respectively, for t € [0,dT]. As
shown in [74], for any n the discontinuity ¥,, satisfies

dx,
dA
and hence it decreases monotonically with A. By increasing this parameter, the
discontinuity ¥, collides with x = 0, disappears, and a new discontinuity, 3,41,
appears at x = 6. At this moment, the system changes from exhibiting n — 1 and n
spikes to exhibiting n and n + 1 spikes (see [74] for more details).

If we compute the lateral images of s at these values, they are given by

(7.13) <0,

where ¢(t; xg; A) is the flow associated with the system & = f(x) + A, with initial
condition ¢(0;zg; A) = x¢. Note that s(X, ) > s(3;") and hence s undergoes a nega-
tive gap at © = X, (see Figure 7.3). Clearly, as the reset action and the integration
of the flow provide orientation preserving maps, § is an increasing map.

The stroboscopic map s is always contracting in [0, 2,,). However, it is contractive
in [3,,0) only if n is large enough (see [74, Lemma 3.4]).



276 ALBERT GRANADOS, LLUIS ALSEDA, AND MACIE] KRUPA

Fig. 7.4 (a) Fized point Tz colliding with the boundary Xp for A = AR. (b) T-periodic orbit for
A= A§. (¢) Fized point T colliding with the boundary X3 for A = A§. (d) T-periodic
orbit for A = Ag. Note that the periodic orbit in (d) should exhibit a reset at t = dT'; this
is why it is plotted in gray.

One can see [74] that, for any n > 0 and d € (0, 1), there exists a range of values of
A, (AR AL), for which s possesses a unique fixed point, Z, € S,, C (0,6). These fixed
points undergo border collision bifurcations at A = AR and A = A% when colliding
with the boundaries ¥, and ¥,,_1, respectively:

A— ALd) = T, — (), n >0,
A— ARd) = 7, — (Z,o)T,n>1

(see Figure 7.4 for n = 2).

As given in (7.13), ¥,, monotonically decreases with A. Hence, for any n > 0,
one can apply a reparametrization such that s can be written as in (2.1) and A
becomes equivalent to the parameter A in (2.7). Therefore, if n is large enough such
that s is contracting, conditions H.1-H.3 and (i) of Theorem 13 are satisfied, and
s exhibits a period adding bifurcation structure under variation of A € [A%, AR, ]
(see [74, Proposition 3.4]). As this occurs for any d € (0,1), the parameter space
(d,1/A) possesses an infinite number of period adding structures. These are shown
in Figure 7.5 for a linear system for f(x). The black regions shown in Figure 7.5(a)
correspond to fixed points; for example, for parameter values at points B, C, D, and
E there exist the fixed points Ty € Sy, T1 € S1, To € S3, and Tz € S3, respectively.
As one can see from the periods of the periodic orbits shown in Figure 7.5(b), there
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Fig. 7.5 (a) Bifurcation scenario in the (d,1/A) parameter space for the map s with f(x) = —0.5x+
0.2, 0 =1, and T = 1.9. The colors refer to the periods of the periodic orbits found by
simulating the system. (b) Period of the periodic orbits found along the the line shown in

(a).

exist period adding structures nested between the regions of existence of fixed points,
as predicted by Theorem 13. Note, however, that the adding structure between B
and C (involving the discontinuity Y1) is not complete. This is due to the fact
that n = 1 is not large enough to guarantee the contractiveness of s on the interval
[X1,0). As the map s (after proper reparametrization and change of variables) satisfies
conditions C.1-C.4, Proposition 28 can be used to provide the existence of a periodic
orbit. However, due to the expansiveness, periodic orbits may be unstable and not
unique, and hence they are not easy to detect by direct simulation.

One of the most interesting properties that one can derive from the period adding
structures comes from the symbolic dynamics and the rotation numbers associated
with these periodic orbits. Specifically, consider parameter values such that %, €
(0,0) and suppose that the stroboscopic map has a periodic orbit. As explained
above, on each iteration of the stroboscopic map the flow can perform n — 1 or n
spikes. We assign a symbolic sequence to this periodic orbit by setting its kth symbol
to be L if this number is n — 1 and R if it is n. Hence, when divided by the period
of the periodic orbit, this becomes the so-called firing number, which is the average
number of spikes per iteration of the stroboscopic map. Therefore, after recalling
Definition 11 and Corollary 46, it is easy to see that the rotation number (p) and the
firing number (7)) satisfy the relationship

n=n-+p,

where n is such that the periodic orbit steps around the discontinuity >,+1, n > 0.
Therefore, by Theorem 13, under parameter variation, the firing number follows a
devil’s staircase growing from 0 to infinity (see Figure 7.6). When divided by T
(period of the periodic forcing I(t)), the firing number becomes the so-called firing
rate, which is the asymptotic average number of spikes per unit time. Hence, it also
follows a devil’s staircase when varying parameters A and d along lines such as the
one shown in Figure 7.5(a). However, as most of the bifurcation structures shown
in Figure 7.5(a) do not qualitatively depend on T', when this parameter is varied the
firing rate follows a devil’s staircase with pieces of hyperbolas as steps. This is shown
in Figure 7.6(b), and more details on this frequency analysis can be found in [73].
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Fig. 7.6 (a) Firing number along the line shown in Figure 7.5(a), for the same system. (b) Firing
rate under variation of T.

7.2. Examples in Higher Dimensions.

7.2.1. Higher Order Sliding-Mode Controlled System with Relays. In this ex-
ample we recover the results presented in [51], which extend the example shown in
section 7.1.2 to higher order linear systems.

Assume that system (7.4) is a linear system of order n with an equilibrium point
at the origin. In this case, due to the linearity, the block representing the open loop
system in Figure 7.1 can be replaced by its Laplace transform

b
G = TN
(s) 00
where U(s) is a polynomial of the form
(7.14) U(s) = s" 4+ an_18""*+---+ aop,

which we assume to have real negative roots only.
The system can be written in terms of a differential equation as

(7.15) Y™+ an_1y" Y 4+ agy = bul(t),

with y(t),a;,b € R, y?) = d'y/dt’, and where u(t) € R is the input of the system. We
wish to design a control such that the output of the system, y(t) € R, is stabilized
around a new equilibrium point y*; that is, y(t) ~ y* and y) ~ 0 for 1 < i < n.
To achieve this, we consider a two-step control. A first action is taken by a classic
controller given by the block G.(s), which we assume to be of the form

Gs)=1+c1s+---+ Cn18" L.
The second part will be given by a relay of gain k. Then the desired motion becomes
y—y ey £ eyt =0
Equivalently, system (7.15) can be written as a first order n-dimensional system as

(7.16) y = Ay + Bu,
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where

and A and B become

0 1 0 0
0 0 1 0 O
A= .. 5 B = : )
0
0 0 0 1 0 b
—ag —ap —Q0p—2 Ap—1

After the T-periodic sampling, the input u becomes constant on the intervals ¢t €
[iT, (i +1)T):

—k ifo(y) <O,
(7.17) v ifoly)
ko ifa(y) >0,
where
(7.18) oy)=y—y" +Cly1) +~-~+cn_1y"_1).

We wish to stabilize the system close to the switching surface

o(5) = 0.

The fact that the polynomial U(s) possesses real negative roots only ensures us that,
for k = 0, system (7.16) possesses an attracting node at the origin. In order to find
proper values of k such that there exists dynamics satisfying o(g(¢)) = 0, we impose
(stable) sliding motion on the surface given by o = 0, which occurs when the vector
fields F* = Ay + BE, obtained by replacing u = £k, both point to the surface o. As
in section 7.1.2, if one imposes that both fields point toward opposite directions, one
obtains unstable sliding. Since F'* are smooth everywhere, sliding motion occurs if

(7.19) (Lp+o)(Lp-0) <0,

where Lo is the Lie derivative of o along the field X.

Let us define ueq = —%. Then the previous inequality holds in the subset of
o defined by
(7.20) — k] < ueq < |K|

(see [131] for details), which also provides stable sliding. In turn, this result can be
read as for k properly selected (both in sign and in absolute value), there is stable
sliding motion on o.
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After the discretization performed by the T-periodic sampling, the system is bet-
ter understood by the time-T" return (stroboscopic) map

(721) Ply) = {PAy) =pg+puc ifo(y) <0,

Pr(y) = py+pr if o(y) >0,

where p, pc, and pgr are the matrices
p=e'T, pur =k(p—Id)(A'B), pe=—k(p—Id)(A""'B).

The maps Pr and Pg are the time-T return maps (stroboscopic) maps associated
with the fields F'™ and F~, respectively.

Using the facts that system (7.16) is linear and that, for £ = 0, it possesses an
attracting node, the matrix p possesses real positive eigenvalues with modulus less
than 1 only.

Each branch, P. and P, of the map (7.21) has a fixed point

(7.22) gr=—(p—Id) 'ur, §c=—(p—1Id) pr,

which may be feasible or virtual depending on whether or not they belong to the
domain of their respective map. When feasible, these fixed points become attracting
nodes, and they undergo border collision bifurcations when they collide with boundary
a(y) =0.

Regarding the possible dynamics, we distinguish between three different situa-
tions.

If both fixed points are feasible (o(yr) > 0 and o(yz) < 0), they also become
attracting fixed points of the map (7.21). Their domains of attraction are formed by
the values of § € R™ such that o(g) > 0 and o(y) < 0, respectively.

If only one of the fixed points is feasible (o(gr) < 0 and o(gz) < 0 or vice versa),
then it becomes the unique fixed point of the map (7.21). As it is attracting, all
trajectories tend toward it, and now its domain of attraction becomes R™.

Note that, in these two cases, the control specification is not fulfilled since o(y) = 0
is not flow invariant by the vector fields F*.

The third situation occurs when both fixed points are virtual (o(yzr) < 0 and
o(ge) > 0). This occurs when the sliding condition (7.19) is fulfilled, guarantee-
ing that the original time-continuous system possesses sliding motion on o(y) = 0.
Provided that the fixed points are attracting, the map (7.21) satisfies condition 2 of
Theorem 61. Letting

={yeR" |o(y) =0} N,

condition 1 is also satisfied by taking the set U small enough while still containing
both virtual fixed points. As a consequence and noting that both P, and Pgr preserve
orientation as they are obtained from the integration of a flow, the map P admits
zero or one periodic orbit. When it exists, such a periodic orbit must have a symbolic
itinerary contained in the Farey tree of symbolic sequences shown in Figure 3.1(b).
As noted in Remark 64, the results given in section 6 do not provide informa-
tion about bifurcation structures. In Figure 7.7 we show the bifurcation structure
obtained for the planar case when the parameters k and y* are varied. As one can
see in Figure 7.7(b), the structure obtained resembles the period adding described in
section 2.2 for the one-dimensional case, although it is not known whether for the
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Fig. 7.7 Bifurcation scenario in the (y*, k)-parameter space for the planar case, n = 2. The rest of
the parameters are fized to ap = —2, a1 = =5, b=1, ¢c1 = 1.5, and T = 0.1. In (a) we
show the border collision bifurcation curves separating existence regions of periodic orbits.
In (b) is shown the periods of the periodic orbits found along the pointed curve in (a)
parametrized by X.
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Fig. 7.8 Schematic representation of a ZAD-controlled boost converter.

planar case the gluing of orbits is also fractal. A similar physical interpretation of the
bifurcation structure as in the first order case (section 7.1.2) also holds in this case.

7.2.2. ZAD-Controlled DC-DC Boost Converter. In this applied example we
recover the results shown in [7] and state them in terms of the quasi-contractions of
section 6. We consider a DC-DC boost converter, which converts a given constant
DC voltage, v;, into a desired lower one, v,. Its circuit is shown schematically in
Figure 7.8. To achieve this conversion in a robust way (to guarantee a certain stability
of v, under possible fluctuations of v;), the transistor shown in Figure 7.8 needs to be
properly controlled. There exist different approaches to designing such a control; in
this example we consider the so-called zero average dynamics (ZAD) strategy, which
is well-used in the community [52, 8, 9, 10, 53, 16, 7].

Letting v be the voltage at the capacitor, ¢ the current through the solenoid,
setting
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and rescaling time by a factor of v LC, the nondimensional equations that model the
system become

&= —yr+y(l—u),

(7:23) y=—-x(1—u)+1,

L
R2C*
transistor is opened or closed, respectively. It is given by the output of a pulse width
modulation (PWM) process and can be written as

with v = The function u takes the values 0 or 1 depending on whether the

1 if kT <t < kT +1/2Tdy,
u(t) =2 0 if kT +1/2Tdy <t < (k+1)T — 1/2Tdy,
1 i (k+1)T—1/2Td, <t < (k+1)T,
where d; € [0, 1] is the so-called duty cycle. It is computed at each sampling moment,
ty = kT, and is kept constant until the next sampling period, t;+1. Note that if
dr =1 or d = 0, then u becomes constant in the time interval [kT, (k + 1)T), equal
to 1 or 0, respectively.

The ZAD strategy consists of computing the value of the duty cycle at each T-time
interval, d, by imposing

(k+1)T
(7.24) / s(t)dt =0 Vk € Z,
kT

where s(t) is the error surface

s(x(t),y(t)) = k1 ((t) — @res) + k2 (y(t) — Yres) ,
with

v 2
Tref = ;_Cif’ Yref = (xref) v
i

and k; and ks two control constants.

Equation (7.24) becomes transcendental in di. However, if the solution of sys-
tem (7.23) is approximated by piecewise-linear functions, the duty cycle can be ap-
proximated by the closed expression

250 + T3
(7.25) dy = 20T %2
S9 — 8§81

where
51 = —vk12(kT) + ko,
S0 = k1 (—ya(kT) + y(kT)) + ka2 (1 — z(kT)),
so = k1 (2(kT) — xrer) + k2 (Y(KT') — yrey)
(see [7] for more details). Provided that the duty cycle lies in the interval [0, 1], it is

set to 1 or 0 depending on whether the result of expression (7.25) is greater than 1 or
less than 0, respectively. That is, one imposes the saturation condition

1 if M > 1,

SS9 — 8o

(7.26) di = .
0 if M <0.

59 — S
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ks

Fig. 7.9 Bifurcation curves in the k1 X k2 parameter space.

Let us now consider the time-T" return (stroboscopic) map of system (7.23). It be-
comes the composition of three stroboscopic maps consisting of flowing system (7.23)
for the time intervals [kT,kT + 1/2Tdy), [kT + 1/2Tdy, (k + 1)T — 1/2Tdy,), and
[(k+1)T —1/2Tdy, (k 4+ 1)T) setting u = 1, w = 0, and u = 1, respectively (see [7]
for more details). As these three maps are smooth maps, their composition is also a
smooth map, as long as dj given by (7.25) lies in the interval (0,1). However, due
to the saturation condition (7.26), the stroboscopic map indeed becomes a piecewise-
defined map with two switching manifolds,

= A{(w,y) [di(e,y) =1},
Yo = {(z,y) |di(2,y) = 0}.

Hence, the stroboscopic map is indeed defined in three different partitions.

In Figures 7.9 and 7.10 we show the numerical results obtained by direct sim-
ulation of the stroboscopic map, when fixing the initial conditions to (zo,y0) =
(2.5,(2.5)%y) and varying the parameters k1 and ko. In Figure 7.9 we show the
bifurcation curves in the parameter space (k1,k2). Due to the linearity of the sys-
tem, these become straight lines. In Figure 7.10 we show the results obtained along
the curve labeled in Figure 7.9 and parametrized by the angle A. As shown in Fig-
ure 7.10(a), for A € (0,0.27), A € (0.95,1.2), and A € (2.5,3) (approximately), the
stroboscopic map possesses a fixed point. For the first and third intervals, the duty
cycle associated with the fixed points is saturated to 0, whereas for the second one the
duty cycle lies in the interval (0,1). As one can see in Figure 7.10(a), there exists a
period—adding-like structure between the first two intervals. The periodic orbits that
one finds there possess points in the partitions where the duty cycles are saturated
to 1 and to 0. As a consequence, associated to each periodic orbit there exists a
sequence of 0’s and 1’s, which are distributed such that the sequence is maximin (see
Definition 56), or, equivalently, they belong to the Farey tree of symbolic sequences
shown in Figure 3.1(b). For example, for the two 5-periodic orbits found one obtains
the sequences of duty cycles (0,0,0,0,1) and (0,0,1,0,1), which are maximin. Note
that, when dj is saturated to 1, the transistor remains closed for a whole sampling
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Fig. 7.10  Bifurcation scenario found around the curves labeled in Figure 7.9 and parametrized by
A, for parameter values v = 0.35, xpef = 2.5, T = 0.18. In (a) we show the periods
of the periodic orbits found when varying A\. In (b) we show the bifurcation diagram
corresponding to x.

period and more energy is drained from the source. Therefore, periodic orbits with
high rotation number may not be desired, as they possess a larger number of saturated
cycles, leading to a less efficient conversion.

Although a more accurate study of the properties of the stroboscopic map is
needed, provided that the map contracts, there is evidence that the stroboscopic map
is a quasi-contraction, at least for those values of A corresponding to the period—
adding-like structure.

Finally, note that for values of A in (1.2), (2.5), trajectories with the initial con-
dition used converge toward a chaotic attractor or are aperiodic.

8. Conclusions and Future Directions. In recent years, piecewise-smooth maps,
both in R and in R", have been widely investigated and very interesting bifurcation
phenomena (border collisions, big bangs, period adding, period incrementing, etc.)
have been reported by many authors. This has included works by both more ap-
plied communities, such as power electronics [8, 30, 116], control theory [46, 51, 137],
biology [57, 106], neuroscience [74, 88, 121], or economics [128] (see sections 1, 6,
and 7 for more references), but also researchers with a more theoretical and/or com-
putational perspective on nonsmooth systems [22, 65, 78]. It is well known that
some of these bifurcations resemble phenomena observed and well-studied in other
contexts, especially in the theory for circle maps developed in the 1980s and early
1990s [2, 34, 40, 60, 61, 115, 133] and in homoclinic bifurcations [80, 113, 122, 130]
(see sections 1, 5, and 6 for more references).

In this survey article we have considered a general setting for piecewise-smooth
contracting maps with a discontinuity at the origin and exhibiting a codimension-
two border collision bifurcation. It is well known that, depending on the sign of the
slopes of the map near the discontinuity, one generally finds two different bifurcation
scenarios: period adding (for the increasing-increasing case) and period incrementing
(when the slopes have different sign). In this survey article we have revisited the
latter and have shown a path through the literature providing a rigorous proof for
the former. Moreover, we have discussed the extent o which these results can be
applied to piecewise-smooth expanding maps and to higher dimensions. Finally, we
have shown how they can be used to provide a rigorous basis to applied examples.
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8.1. Period Adding for Contracting One-Dimensional Piecewise-Smooth
Maps. The main contribution of this review article is its revisiting of the litera-
ture in order to provide sufficient conditions for the occurrence of this bifurcation
scenario (described in section 2.2), which occurs when the map preserves orientation
near the discontinuity at the origin (is of the increasing-increasing type); the proof
is summarized in section 3.2. The key step is to link such maps with maps in the
circle. Although the resulting circle map is also discontinuous, the fact that the map
is contracting guarantees that its lift is a strictly increasing map, which is a sufficient
condition for the main properties of the rotation number of a map to hold: existence,
uniqueness, and continuity and monotonicity with respect to parameters. By using
the concept of “well-ordered” cycles, periodic orbits are linked with the symbolic se-
quences given in the Farey tree of symbolic sequences. When parameters are varied,
the theory for expanding circle maps is applied to its inverse to show that the rotation
number follows a devil’s staircase and, when the rotation number is irrational (which
occurs in a Cantor set of zero measure), the omega limit of the map becomes instead
the whole circle or a Cantor set. The latter occurs when the circle map obtained is
discontinuous; the former may occur otherwise.

8.2. Period Incrementing for One-Dimensional Piecewise-Smooth Maps. The
period incrementing scenario occurs when the piecewise-smooth map has different
monotonicity at both sides of the discontinuity at the origin. We revisit results in the
literature that provide sufficient conditions for the contracting case. The bifurcation
scenario leads to the existence of stable periodic orbits of the type L™R or LR,
depending on whether the map is increasing-decreasing or decreasing-increasing, re-
spectively. Moreover, such a periodic orbit may coexist with another periodic orbit of
the type LR (or LR™1). In this case, both periodic orbits are stable and their
domains of attraction are separated by the origin (the discontinuity).

8.3. Period Adding and Incrementing Bifurcations in Piecewise-Smooth Ex-
panding Maps. Most of the results about the orientable case (increasing-increasing)
shown in this review rely on the fact that the lift of the corresponding circle map is a
monotonically increasing map, and indeed they do not require the map to be contract-
ing. A necessary condition is then the reversibility of the map, which is guaranteed
when it contracts near the discontinuity. However, such a reversibility condition also
holds when the map is not too expanding. In particular, if it holds, the map possesses
the same types of periodic orbits as in the contracting case, although they may not
be unique or stable. In contrast to the contracting case, the set of parameters for
which one finds dynamics associated with irrational rotation numbers is of nonzero
measure.

When the map becomes sufficiently expanding that the reversibility condition no
longer holds, one loses the uniqueness of the rotation number and needs to deal with
rotation intervals instead. Although there is a large body of theory and literature on
this [1, 2, 4, 5, 68, 70, 134], more work is needed in order to provide general sufficient
conditions leading to a precise and concrete description of the possible bifurcation
scenarios.

The results for the nonorientable case (period incrementing bifurcation) are based
on topological arguments for maps on the interval. This type of periodic orbit performs
a number of steps (reinjection number) on the domain of the increasing branch and
only one step on the decreasing one. The smaller the gap at the origin of the increasing
branch compared to the gap of the decreasing one, the larger the reinjection number
is. Therefore, when the decreasing branch is expanding, some of the techniques can
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also be used when this reinjection number is large enough to compensate for the
expansiveness of the decreasing branch. This results in the existence of the same
types of bifurcations for periodic orbits of large enough length (reinjection number).
Although the same types of period orbits with shorter period may also exist even
when the decreasing branch is expanding, they may be unstable and coexist with
more than one periodic orbit of the type L"R.

In the case where both branches of the map are expanding, the map may pos-
sess positive topological entropy and might hence be chaotic, even when the lift is
continuous [105, 92, 91].

8.4. Maps in Higher Dimensions. The jump from dimension one to dimension
two represents a really challenging problem when it comes to providing general condi-
tions for the occurrence of a concrete type of bifurcation. This is magnified when they
are piecewise-smooth discontinuous maps. However, as we have shown in this review
article (see section 6), some results already existing in the literature might significantly
help in achieving such a goal. Of special interest is the concept of quasi-contractions
developed in the 1980s by Gambaudo et al. [59, 60, 63]. Although such results provide
a very precise description of the type of symbolic sequences associated with periodic
orbits for such maps, the results rely heavily on contraction conditions. Numerical
evidence (see references in section 6.1) shows that one may find similar symbolic
properties under more relaxed conditions, as occurs for the one-dimensional case.

Unfortunately, the rotation theory shown in sections 3.3 and 3.4 cannot be ex-
ported straightforwardly for maps in higher dimensions. However, as for the one-
dimensional case, one may convert such maps into discontinuous maps in higher-
dimensional cylinders by identifying the images of the switching manifolds from both
sides in order to introduce a rotating behavior. Under more restrictive conditions
than in the one-dimensional case, proceeding similarly as in [36] for a particular ex-
ample, this allows one to define the lift of a map, its rotation number, and obtain
some theoretical results based on rotation theory.
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