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Abstract

This thesis is divided in two parts.

In the first part, we formally study the phenomenon of the so-called big bang bifurca-
tions, both for one and two-dimensional piecewise-smooth maps with a single switching
boundary. These are a special type of organizing centers consisting on points in parame-
ter space with co-dimension higher than one from which an infinite number of bifurcation
curves emerge. These separate existence regions of periodic orbits with arbitrarily large
periods. We show how a mechanism for their occurrence in piecewise-defined maps is the
simultaneous collision of fixed (or periodic) points with the switching boundary. For the
one-dimensional case, the sign of the eigenvalues associated with the colliding fixed points
determines the possible bifurcation scenarios. When they are attracting, we show how
the two typical bifurcation structures, so-called period incrementing and period adding,
occur if they have different sign or both are positive, respectively. Providing rigorous ar-
guments, we also conjecture sufficient conditions for their occurrence in two-dimensional
piecewise-defined maps. In addition, we also apply these results to first and second order
systems controlled with relays, systems in slide-mode control.

In the second part of this thesis, we discuss global aspects of piecewise-defined Hamil-
tonian systems. These are piecewise-defined systems such that, when restricted to each
domain given in its definition, the system is Hamiltonian. We first extend classical Mel-
nikov theory for the case of one degree of freedom under periodic non-autonomous per-
turbations. We hence provide sufficient conditions for the persistence of subharmonic
orbits and for the existence of transversal heteroclinic/homoclinic intersections. The cru-
cial tool to achieve this is the so-called impact map, a regular map for which classical
theory of dynamical systems can be applied. We also extend these sufficient conditions
to the case when the trajectories are forced to be discontinuous by means of restitution
coefficient simulating a loss of energy at the impacts. As an example, we apply our re-
sults to a system modeling the dynamical behaviour of a rocking block. Finally, we also
consider the coupling of two of the previous systems under a periodic perturbation: a
two and a half degrees of freedom piecewise-defined Hamiltonian system. By means of
a similar technique, we also provide sufficient conditions for the existence of transversal
intersections between stable and unstable manifolds of certain invariant manifolds when
the perturbation is considered. In terms of the rocking blocks, these are associated with

1



2

the mode of movement given by small amplitude rocking for one block while the other
one follows large oscillations of small frequency. This heteroclinic intersections allow us
to define the so-called scattering map, which links asymptotic dynamics in the invariant
manifolds through heteroclinic connections. It is the essential tool in order to construct
a heteroclinic skeleton which, when followed, can lead to the existence of Arnold diffu-
sion: trajectories that, in large time scale destabilize the system by further accumulating
energy.



Chapter 1

Introduction

1.1 Big Bang bifurcations

In the first part of this thesis we study in a general way which are the dynamical phe-
nomena behind these bifurcations. This allows us to provide general conditions not only
for the occurrence of the so-called big bang bifurcations but also to predict the involved
bifurcation structures.

Chapter 2 is devoted to provide sufficient conditions for the occurrence of the bifurca-
tion scenario referred as period incrementing for one-dimensional piecewise-defined maps.
It results from a collaboration with Viktor Avrutin and of Michael Schanz, and has been
published in [AGS11].
Chapter 3 is more a guideline of a proposal of future work in order to provide and prove
similar conditions for the so-called period adding scenario (§3.2). We also provide a pro-
posal on how these two previous results can be extended to two-dimensional piecewise-
defined maps (§3.3).
In Chapter 4 we apply the previous results, for one and two-dimensional maps, to first
and second order linear systems in sliding-mode control. In a very natural way, we derive
from a general control scheme based on a relay systems for which the previous results
hold. We show how to predict big bang bifurcations occurring in the parameter space
formed by the relevant parameters from the control design point of view. This results
from a joined work with Enric Fossas, and has been published in DEDS, [FG12].

1.1.1 General description

In the context of piecewise-smooth dynamics, big bang bifurcations have been reported
in the literature (see references below) as specific type of organizing centers in param-
eter space, where an infinite number of bifurcation curves issue from, separating exis-
tence regions of different periodic orbits with arbitrarily large periods. Typically, this
codimension-two phenomenon has been detected in one-dimensional piecewise-smooth

3
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maps when globally investigating two-dimensional parameter spaces ([AS06a, ASB06,
ASB07]), although it is known that they occur also in higher-dimensional maps and flows.

The importance of these points lies on the fact that they organize the dynamics in the
parameter space, as all the possible periodic orbits existing in a neighborhood of such a
point are “created” there. In the cited works it was shown that there are several types of
big bang bifurcations, which cause different bifurcation scenarios to occur in their neigh-
borhood.
Usually, these detections have been performed numerically and supported by analytical
calculations, as no systematic procedures to detect and describe them have been reported
until now. As these bifurcations can be observed in many systems in several fields, the
question arises how to predict their occurrence and how to determine their type.
Based on experience and observation, such a phenomenon seems to appear for piecewise-
defined maps when, under certain conditions, two fixed points (or periodic orbits) collide
simultaneously with the boundary. More precisely, consider an n-dimensional state space
X split into two parts, X` and Xr, by a hypersurface Σ and two two-parameter diffeo-
morphisms f`(x; c`, cr), fr(x; c`, cr) : X → X. Suppose that fi, i ∈ {`, r}, possesses a
unique1 (stable) fixed point1 x∗i with real associated eigenvalues. Suppose also that for
c` = cr = 0, both fixed points cross Σ transversally at the points x̃∗i ∈ Σ2. Suppose also
that, near c` = cr = 0, the position of the fixed point x∗i is locally controlled by ci. Let
us then consider the piecewise-defined map

f(x) =

{
f`(x; c`, cr) if x ∈ X`

fr(x; c`, cr) if x ∈ Xr.

It is clear that, whenever one of these points crosses transversely the boundary, it under-
goes a border collision bifurcation ([NOY94]) and the fixed point becomes virtual. Then,
all initial values tend to the other fixed point or, eventually, to a two-periodic orbit with
one iteration at each side of Σ. However, if both fixed points become virtual (increasing
both parameters through (c`, cr) = (0, 0)) then, for values of (cl, cr) arbitrarily close to
(0+, 0+) it is possible to have periodic orbits of arbitrary period, with periodic points on
both sides of Σ. That is, there may exist a big bang bifurcation at the origin of the pa-
rameter space c`× cr. If one then encodes the periodic orbits depending on which side of
Σ the consecutive iterates belong to, it is easy to see that the possible symbolic sequences
of the periodic orbits mainly depend on the sign of the eigenvalues of the fixed points
associated with the eigendirections pointing to Σ. In the general n-dimensional case, an
explicit description of which symbolic sequences are possible and which are not, for every

1We consider it unique for simplicity. Obviously, everything in what follows remains the same if both
fixed points can be isolated from other invariant sets in a certain neighborhood.

1For simplicity, we assume them to be fixed points, considering an appropriate iterated function
everything can be argued similarly also for periodic orbits.

2Note that, for n > 1, we do not assume that x̃∗` = x̃∗r . Therefore, in general, f would not necessary
have to be continuous at the codimension-two bifurcation point.
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case, remains an open problem.

In the first part of this thesis, we will first restrict ourselves, in Chapter 2, to one-
dimensional maps f such that both colliding fixed points are stable (f` and fr are con-
tractive near x = 0 if c` and cr are small). In that case, one has X = R, Σ = {0} (up
to translation) and f becomes a map with a single discontinuity at x = 0. The distance
between the fixed points and the boundary is controlled by the offsets c` and cr at the
origin, and the sign of the eigenvalues of the fixed points are, obviously, given by the
slopes of f` and fr near x = 0 for c` and cr small.
Then, regarding these signs one can consider two different interesting cases: positive-
positive (increasing-increasing) and positive-negative (increasing-decreasing)3 for which
the bifurcation scenarios near the codimension-two bifurcation point are very different.

The bifurcation scenarios for these two cases were first studied using the offsets as
a particular parameterization of a linear piecewise-defined map by Leonov in the late
50’s ([Leo59], see also [Mir87]). There, using direct computations, both scenarios were
described, and have been later called period adding (increasing-increasing) and period
incrementing (increasing-decreasing) ([AS06a]).

Later, it was shown that similar maps were obtained as first return maps of n-
dimensional flows (n ≥ 3) near a double homoclinic bifurcation, as in the Lorenz case.
In this context, this type of (contracting) maps have been intensively studied ([CGT84,
GGT84, GGT88, GPTT86, GH94, Hom96, LPZ89, TS86, PTT87, Spa82]), both near the
codimension-two bifurcation point and far away from it.
For the contractive case, a first study of the codimension-two bifurcation point in a two-
dimensional parameter space was performed in [CGT84]. It was there mentioned in a
footnote that going through a certain region in this space one could find an infinite num-
ber of periodic (and also aperiodic) orbits and that this region shrinks infinitely to the
origin of the parameter space, the big bang bifurcation point. One month later, it was
stated in [GGT84] a first relation between the possible symbolic sequences of the peri-
odic orbits near the codimension-two bifurcation point, their rotation numbers and their
connection to the Farey numbers. This point was called there gluing bifurcation, as the
periodic orbits created there were obtained by “gluing” other periodic orbits. This was
finally proved in [GGT88] for a contraction ratio less than 1

2
and later in [GT88] for the

pure contracting case.
However, in none of these works the sign of the eigenvalues were considered and, therefore,
no distinction between the different bifurcation scenarios was taken into account. This in
fact represents the main difference between a gluing bifurcation and the codimension-two
bifurcation point that, following [AS06a], we refer here as big bang bifurcation. While

3Recall that we are dealing in this work with maps contractive on both sides. Then, the decreasing-
increasing case is equivalent to the increasing-decreasing one. For the decreasing-decreasing one, only a
two-periodic orbit or one or two fixed points are possible.
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the last one is characterized by an infinite number of bifurcation curves issuing from
the point thereby separating periodic orbits with arbitrarily large periods, the first one
refers to the fact that two periodic orbits are glued, although maybe an infinite number
of times through successive gluing. This implies, for example, that for the decreasing-
decreasing case (see footnote 3) a gluing bifurcation occurs creating a two-cycle, but is
not a big bang bifurcation as the two colliding fixed points and the two-periodic orbit
are the unique invariant objects that one can find near the codimension-two bifurcation
point.

A long time after Leonov, in the context of the double homoclinic bifurcation, the sce-
nario for the increasing-increasing case (period adding) was first described for a quadratic
piecewise-defined map at the same time in [GPTT86] and [TS86], and later studied in
more detail in [LPZ89, PTT87] using direct computations for low periods and renor-
malization techniques. There, it was shown that the infinite number of periodic orbits
emerging from the origin of the parameter space are created by “gluing” them and adding
their periods. More recent studies ([AS06a, ASB06, ASB07]) have shown, using direct
computations and numerical simulations, that this phenomenon seems to appear for other
piecewise-defined maps.
On the other hand, very rigorous works ([AF03, AL89, ALMT89, Gle90, HS90, LM01,
LM06]) also gave classification, properties and the sets of periods of the possible peri-
odic orbits using kneading invariants. This was done for expansive increasing-increasing
piecewise-defined maps (also called Lorenz-like maps) by focusing on them as continuous
circle maps. In this case, an explicit list of the possible periodic orbits is still missing
when a similar parameterization controlling the offsets is used.

1.1.2 Period incrementing

The periodic orbits emerging from the origin of the parameter space for the increasing-
decreasing case were first described also in [Leo59] ([Mir87]) for a piecewise-linear map.
The resulting bifurcation scenario was proven in [GH94] for a particular parameterization
of a contractive quadratic piecewise-defined map. This was achieved by collapsing the
three-dimensional flow undergoing the double homoclinic bifurcation to a 2-dimensional
branched template and using theory of knots and templates. This bifurcation scenario
was named in [AS06a] period incrementing scenario when analyzing a piecewise-linear map
using the offsets as parameters, because the periods of the periodic orbits emerging at
the origin of the parameter space are incremented by a constant value. This is precisely
what we prove independent of the particular topology in Chapter 2, in collaboration
with Michael Schanz and Viktor Avrutin, through the result shown in Corollary 2.4.1.
Additionally we make it independent of particular parameterizations in Theorem 2.2.2.
There we show for a general piecewise-smooth one-dimensional map that, whenever two
(stable) fixed points simultaneously collide with the boundary in such a way that the
signs of the associated eigenvalues are different, then a big bang bifurcation of the period
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incrementing type takes place.
This scenario is also included in the gluing bifurcation considered in [GGT84], as successive
periodic orbits are created by using always the same “gluing orbit”. However, this leads
to a much simpler bifurcation structure near the codimension-two bifurcation point than
for the increasing-increasing case, in the sense that the second scenario contents orbits
that do not exist in the first one.

Also in [Hom96] one can find an accurate description of both scenarios together with
the mechanisms that create the orbits. The objective there was to describe the bifurcation
scenario for a homoclinic bifurcation of a flow with a single homoclinic orbit under the
existence of what is called in [Hom96] a generalized homoclinic orbit. This leads the first
return map near the saddle point studied in [Hom96] to be the one considered above,
but with dependence only on a single parameter making these results valid only in a
distance from the codimension-two bifurcation point. By understanding the flow as a
small perturbation of one with two homoclinic orbits, it is argued in [Hom96] that this also
holds near the codimension-two bifurcation point. However, in Chapter 2, by embedding
the period incrementing scenario in its natural two-dimensional parameter space, we show
this independently of the flow stating it in the context of non-smooth dynamics. Moreover,
we also show that the situation described there occurs for periodic orbits with arbitrarily
large periods. In addition, this allows to relax the global contracting condition required
in [Hom96] to be locally fulfilled.

1.1.3 Period adding, extension to 2D maps and applications

The bifurcation scenario obtained for the increasing-increasing case (period adding) has to
be treated more carefully. After the simultaneous collision of the two stable fixed points,
when they are virtual, the one-dimensional map can be reduced to a discontinuous map
onto the circle. This map is injective and turns out that its inverse can extended to a
continuous (expanding) circle map onto the circle. For this map, the bifurcation scenario
under continuous variation of both parameters leads to the so-called devil’s staircase when
looking at the rotation numbers of the periodic orbits. This opens a bridge between phe-
nomena proper from non-smooth dynamics and classical rotation theory for circle maps,
for which there exists a large literature ([ALMS85, ALMT89, AL89, AM90] among others).
This is what we provide in Chapter 3 (section 3.2) through the conjectured Lemma 3.2.1.
In addition, several results from the 80’s ([GIT84, GGT84, CGT84, GGT88]) may be
used to relate the rotation numbers of the periodic orbits with the symbolic sequences
appearing in the period adding structure.

Following the idea given by the simultaneous collision of fixed points with a boundary
under the variation of two parameters, we extend in § 3.3 these results to two-dimensional
piecewise-defined maps. Basically, the conditions regarding the signs of the eigenvalues
associated with the colliding fixed points (the monotony properties of the one-dimensional
map near the codimension-two bifurcation) are translated by topological properties for
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the two-dimensional case. More precisely, these refer to intersection of certain sets with
their images at the codimension-two bifurcation point.

In Chapter 4, done in collaboration with Enric Fossas, we apply these results to certain
control systems. More precisely, to first and second order systems in sliding-mode control.
These are systems given by first and second order differential equations whose input is
regulated in order to achieve a certain desired output. This regulation is performed by
forcing the system to slide along a certain switching surface where, when restricted to
it, the system behaves as desired. In practice, this is usually implemented in digital;
hence, we consider the discretized version of these systems. This yields to a one or two-
dimensional piecewise-defined map of the form considered in Chapters 2 and 3. Then, we
show that, under variation of parameters relevant from the control design point of view,
the conditions for the occurrence of a big bang bifurcation are given; specially, the ones
described in Chapter 3 and hence leading to the existence of big bang bifurcations of the
period adding type for these one and two-dimensional piecewise-defined maps.

1.2 Melnikov methods and scattering map in piecewise-

smooth systems

In the second part of this thesis we focus on global aspects of piecewise-defined “Hamilto-
nian”systems. With this we refer to piecewise-defined systems defined in domains where,
when restricting to them, the resulting system is Hamiltonian. This provides a piecewise-
defined function that, when continuous, provides a preserved quantity and hence we refer
to it as piecewise-defined Hamiltonian of the system.

The most paradigmatic examples of such systems are mechanical systems with im-
pacts and electrical systems with switchings. In this part of the thesis we focus on a
special type of piecewise-defined Hamiltonian systems obtained as a generalization of the
so-called rocking block. It consists of a rigid planar block which can rock about to of the
ground corners (see Fig. 5.7). Each of these two modes of motion is modeled by a classical
Hamiltonian behaving like an inverted pendulum. The transition between both modes,
given by the impacts with the ground (crossings of the switching manifold), leads to a
system whose equations of motion are provided by a piecewise-defined continuous Hamil-
tonian. The phase portrait of these systems is formed by two C0 heteroclinic connections
which surround a region fully covered by C0 periodic orbits.

In the second part of this thesis we first focus, on Chapter 5, on the persistence of these
objects when considering a small periodic forcing, simulating an small earthquake, and
a small loss of energy at the impacts, hence rigorously extending the classical Melnikov
methods to such class of systems. This work, done in collaboration with Tere Seara and
John Hogan, has been accepted for publication in SIADS, [GHS12].
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In Chapter 6, we consider the cross product of two of such systems, leading to a two-
degrees of freedom piecewise-defined Hamiltonian system with two switching manifolds.
We focus on the mode of motion given by the periodic orbits for one system and the
heteroclinic connections for the other one. In terms of the rocking block model, this is
translated on a fast rocking mode of motion for one block while the other one performs
large and lower frequency oscillations. This leads to the existence of three-dimensional C0

invariant manifolds and four-dimensional heteroclinic manifolds. We then rigorously prove
their persistence when introducing a Hamiltonian periodic perturbation which depends
also on all variables. Moreover, this allows us to define the so-called scattering map
similarly as in [DdlLS06], which is an essential tool to prove the existence of Arnol’d
diffusion by means of heteroclinic chains.

1.2.1 Extension of classical Melnikov methods

The Melnikov method provides tools to determine the persistence of periodic orbits and
homoclinic/heteroclinic connections for planar regular systems under non-autonomous
periodic perturbations [GH83]. This persistence is guaranteed by the existence of sim-
ple zeros of the subharmonic Melnikov function and the Melnikov function, respectively.
In this work we extend these classical results to a class of piecewise-smooth differential
equations, which generalize a mechanical impact model. In such systems, the perturba-
tion typically models an external forcing and, hence, affects a second order differential
equation. In this chapter, we allow for a general periodic Hamiltonian perturbation, po-
tentially influencing both velocity and acceleration. Note that no symmetry is assumed
in either the perturbed or unperturbed system.

The unperturbed system is defined in two domains separated by a switching manifold
Σ, and possesses one hyperbolic critical point on either side of Σ. We distinguish between
two different unperturbed systems. In the first case, which we call conservative, two het-
eroclinic trajectories connect both hyperbolic points, and surround a region completely
covered by periodic orbits including the origin. In the second case, we introduce an en-
ergy dissipation, which is modeled by an algebraic condition that forces the solutions to
undergo a discontinuity every time they cross the switching manifold. Then, the origin
becomes a global attractor and non-trivial periodic orbits and homoclinic/heteroclinic
connections can not exist for the unperturbed system.

In order to consider the persistence of periodic orbits for a smooth system, the classi-
cal Melnikov method looks for fixed (or periodic) points of the time T stroboscopic map,
where T is the period of the perturbation. Since this map is as regular as the flow, one
can study its periodic points using classical perturbation methods.

However, for our class of systems, the time T stroboscopic map becomes unwieldy to



10 1.2. MELNIKOV METHODS IN PIECEWISE-DEFINED SYSTEMS

use because one has to check the number of times that the flow crosses the switching
manifold, which is a priori unknown and can even be arbitrarily large. Hence, the regu-
larity properties of this map are not straightforward. Instead of the classical stroboscopic
map, using the switching manifold as a Poincaré section and adding time as variable, we
consider the first return Poincaré map, the so-called impact map. For the system under
consideration, the unperturbed impact map is defined on the cylinder and, under generic
hypothesis, is a twist map. Moreover, this map is smooth and hence we can use classical
perturbation theory to rigorously prove sufficient conditions for the existence of periodic
orbits by looking for periodic points of the perturbed impact map. In the conservative
case, these conditions turn out to be analogous to the ones given by the classical Mel-
nikov method, so extending it to a class of piecewise-smooth systems (Theorem 5.3.1). In
addition, we rigorously prove that the simple zeros of the subharmonic adapted Melnikov
function can guarantee the existence of periodic orbits when the trajectories are discon-
tinuous (Theorem 5.3.2). These discontinuities model a loss of energy on the system and,
hence, we also provide conditions for the persistence of these orbits even when the system
is dissipative.
The impact map can also be used to prove the existence of invariant KAM tori in the
system since it is a twist map in the unperturbed case. After writing the system in action-
angle variables, these ideas were applied in [KKY97] to a different system to prove the
existence of such tori.
The use of perturbation methods for the existence of periodic orbits of some specific
linear systems can be found in [TA07, CFGF11]. Other works have also been applied
in [DLZ08, LH10, DL12] to general autonomous systems for the persistence of periodic
orbits. The existence of subharmonic orbits in a class of piecewise-smooth systems is
shown in [Yag] by uniformly approximating the solutions of the piecewise-smooth system
with solutions of a smooth one.

The proof of the persistence of heteroclinic/homoclinic connections for periodically
perturbed smooth systems is well established by the classical Melnikov method [GH83].
The main idea is to take some point on the unperturbed homoclinic/heteroclinic connec-
tion and consider a section normal to the unperturbed vector field at this point. By the
regularity properties of the stable and unstable manifolds of hyperbolic critical points in
smooth systems, one can measure the distance between the perturbed manifolds. The
Melnikov method derives a first order asymptotic formula for this distance given by the
so-called Melnikov function, which is a periodic function whose zeros give, up to first
order in the perturbation parameter, the perturbed homoclinic/heteroclinic points.
By contrast, since the vector normal to the unperturbed vector field is not defined every-
where in the piecewise-defined system considered here, we proceed as in [BK91, Hog92]
and look for the intersection between the stable and unstable manifolds with the switch-
ing manifold. Since this intersection depends smoothly on the perturbation parameter,
we obtain an asymptotic formula for the distance between the manifolds in this section,
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which turns out to be a Melnikov function modified for the piecewise-smooth case. The
zeros of this Melnikov function give rise to the existence of heteroclinic connections for
the perturbed system. Therefore, we rigorously extend the classical Melnikov method for
heteroclinic connections to these class of piecewise-smooth systems.
We also consider the loss of energy at the crossing of the switching surface, modeled by
an algebraic condition which makes the system dissipative and the trajectories discontin-
uous. Then, we also rigorously show that the zeros of the Melnikov function can be used
to guarantee the existence of transversal heteroclinic intersections. Both results are given
in Theorem 5.4.1.
Other works [Kun00, Kuk07, BF08, BF11] have considered the extension of the Melnikov
method to piecewise-defined systems. In these papers, the stable and unstable manifolds
of a hyperbolic point located on one side of the switching manifold intersect it at two
points that are connected by a trajectory defined on the other side of the switching man-
ifold, thus forming a homoclinic loop for the unperturbed system. Then persistence is
related with the zeros of a modified Melnikov function by proving the existence of so-
lutions of a boundary value problem. A Melnikov method for some classes of nonlinear
impact oscillators is developed in [DZ05, XFR09].

1.2.2 The scattering map in a two-degrees of freedom piecewise-
defined Hamiltonian smooth system

In Chapter 6 we study global phenomena for a piecewise-defined Hamiltonian system
resulting from the coupling of two systems of the class of the studied in Chapter 5. That
is, we consider the generalization of a model based on two coupled rocking blocks (by a
spring for instance) under a non-autonomous periodic Hamiltonian perturbation. This
perturbation actually introduces both the coupling and the periodic forcing, which are
controlled through the same perturbation parameter. This leads to a 5-dimensional non-
smooth system with two switching manifolds such that, when restricted to the domains
of the piecewise-definition, the system is a Hamiltonian system with 4 and half degrees of
freedom.

In this system we focus on the configuration given by large amplitude oscillations for
one block while the other one oscillates with higher frequency and smaller amplitude. For
the unperturbed case, this mode of movement is associated with the dynamics given by
the existence of certain 3-dimensional invariant manifolds that are only continuous and
have stable and unstable C0 manifolds. To understand the dynamics of the system it is
crucial to study their persistence when the perturbation is considered. Due to the lack of
regularity of these manifolds, classical perturbation theory cannot be applied. Instead, we
translate these invariant objects in terms of an extension of the impact map, introduced
in Chapter 5, associated with one of the switching manifolds, leading to new invariant
objects that are smooth enough to apply classical theory.
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Once we obtain the persistence of the original objects, we also provide sufficient condi-
tions for the existence of 3-dimensional transversal heteroclinic intersections. This allows
us to define the scattering map following [DdlLS06], which associates dynamics in the in-
variant manifolds through heteroclinic connections. Moreover, by studying the first order
terms of this map we provide sufficient conditions for the accumulation of energy in one
of the two coupled systems, the one of that oscillates with higher frequency.
In terms of the rocking blocks, this is translated by the fact that, at each oscillation of the
large amplitude oscillating block, the other one increases its amplitude of oscillations. The
scattering map provides the so-called heteroclinic skeleton for further concatenations that,
when followed, leads to trajectories which destabilize the system by energy accumulation,
hence giving the existence of Arnold diffusion in such a piecewise-defined system.
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Big bang bifurcations and
applications
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Chapter 2

Sufficient conditions for a period
incrementing big bang bifurcation in
one-dimensional maps

2.1 Introduction

As mentioned in the Introduction of this part of the work, we provide here sufficient con-
ditions for the occurrence of a big bang bifurcations of the period incrementing type.

This work is organized as follows. In §2.2 we state some notation and definitions
and present our result. In §2.3 we prove this result for globally contracting maps for a
concrete parameterization consisting of the offsets at the origin. After that, this result is
extended in §2.4.1 (Corollary 2.4.1) to locally contracting ones near the boundary with
the same parameterization. This can be proved directly but, for clarity reasons, we prefer
to do this intermediate step. In order to give details on how the bifurcations occur, we
obtain in §2.4.2 a first order approximation of the border collision bifurcation curves that
emerge at the big bang bifurcation for this concrete parameterization. Finally, we prove
Theorem 2.2.2 in §2.4.3 and we make the result independent of concrete parameterizations
permitting the parameters not only to vary the position of the fixed points but also the
topology of the map. As these two sections are mainly technical, we encourage the reader
not interested in the proofs to skip them up to §2.5. There, by two examples, we verify the
predictions. In addition, we also verify the increasing-increasing case, and we conjecture
that, in those examples, the period adding big bifurcation is caused by an infinite tree of
big bang bifurcations of the period incrementing type.

15
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2.2 Definitions, properties and statement of the re-

sults

Before restricting ourselves to the class of maps we are interested in, let us start with
some standard definitions and properties of the symbolic dynamics which we are going to
use in this work.

Definition 2.2.1. Given a map f : R → R and x ∈ R, we define the symbolic repre-
sentation of an orbit starting at x, also called the itinerary of x, as If (x) ∈ {L,R}N,
where

If (x)(i) =

{
L if f i(x) ≤ 0
R if f i(x) > 0

, i ≥ 0.

Definition 2.2.2. If x belongs to a n-periodic orbit of a map f , then we will write
If (x) = θ := (θ, θ, . . . ) for some finite sequence θ of length n consisting of symbols L and
R.

Definition 2.2.3. Given the shift map σ defined as σ(α1, α2, α3, . . . ) = (α2, α3, . . . ) where
αi ∈ {L,R}, we will say that two n-periodic sequences, θ1 and θ2, are shift-equivalent (or
just equivalent), θ1 ∼ θ2, if, and only if, there exists 0 ≤ m < n such that σm(θ1) = θ2.

It is easy to see that the relation ∼ defines an equivalence class in the set of symbolic
sequences.

Definition 2.2.4. We will say that a n-periodic orbit x1, . . . , xn of a map f is of type θ
if one has If (xi) ∼ θ, with 1 ≤ i ≤ n and θ a finite sequence of length n. We will also
call it a θ-periodic orbit.

Let us now consider a two-parametric map f(x; c`, cr) of the form1

f(x; c`, cr) =

{
c` + g`(x; c`, cr) =: f`(x; c`, cr) if x ≤ 0
−cr + gr(x; c`, cr) =: fr(x; c`, cr) if x > 0

(2.2.1)

such that

C.1 g` and gr are C∞(R) functions such that for i, j ∈ {`, r}

gi(0; c`, cr) = 0

and the limit

lim
x→0

gi(x; c`, cr)

gi(x; 0, 0)

exists,

1We will also avoid writing the dependence on the parameters explicitly and we will refer to it just as
f(x) or f .
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(a) (b) (c)

Figure 2.1: Influence of the parameters c`, cr on a map as defined in (2.3.1). a) c`, cr < 0,
b) c` = cr = 0 and c) c`, cr > 0.

C.2 there exists ε` > 0 such that 0 < g′`(x; c`, cr) < 1 ∀x ∈ (−ε`, 0) if 0 ≤ c`, cr � 1,

C.3 there exists εr > 0 such that −1 < g′r(x; c`, cr) < 0 ∀x ∈ (0, εr) if 0 ≤ c`, cr � 1,

where

g′(x; c`, cr) =
∂g(x; c`, cr)

∂x
.

Note that conditions C.2 and C.3 allow gi(x; c`, cr) to have zero slope at x = 0.
Note also that if −1 � c`, cr < 0 then the map has two fixed points, one at every
side of x = 0 (see Fig. 2.1). Due to C.2 and C.3, both fixed points are attracting and,
therefore, all orbits with sufficiently small initial conditions will be attracted to one of
them, depending on the sign of the initial condition. If one of the parameters c`, cr
becomes positive, the corresponding fixed point disappears (becomes virtual through a
border collision bifurcation) and all those orbits will be attracted to the other fixed point.
However, if both parameters are positive but small enough, both fixed points disappear
(are virtual) and the orbits starting near the origin stay forever near the origin jumping
from one side of x = 0 to the other one. The possible asymptotic behaviors of these orbits
is precisely what our result describes, which is reflected in the next

Theorem 2.2.1. Let f be a map of type (2.2.1) fulfilling conditions C.1–C.3. Then, there
exists ε0 > 0 such that, for every n > 0 and every ε0 > ε > 0,

a) There exist two curves2 in parameter space c` × cr, ξdRLn−1(c`) and ξcRLn+1(c`), passing

2The meaning of the upper indices d and c refer to “creation” and “destruction” of the corresponding
periodic orbits. These terms of course depend on the point of view that one uses to observe the bifurcation
scenario. We choose here to describe the bifurcation curves in the anticlockwise order.
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through the origin, such that for every 0 < c` < ε with ξdRLn−1(c`) < cr < ξcRLn+1(c`),
there exists a unique periodic orbit, which is stable and of type RLn.

b) For every 0 < c` < ε, ξcRLn+1(c`) < cr < ξdRLn(c`), there coexist two periodic orbits,
which are stable and of type RLn and RLn+1.

Moreover, for (c`, cr) = (0, 0) there exists an open set containing the origin where the
unique invariant object is the stable fixed point x = 0.

This means that, when considering the parameter space c` × cr ' R2, there exists
an infinite number of border collision bifurcation curves, ξd,cRLn , emerging from the origin,
separating all the possible dynamics that one can find near x = 0. These curves are
ordered anti-clockwise as follows (see also Fig 2.7(b) for a graphical explanation). Given
n ≥ 1, one first finds a curve where an RLn-periodic orbit is created through a border
collision, ξcRLn , and coexists with an other one of type RLn−1 until one finds the curve
ξdRLn−1 where the RLn−1 orbit is destroyed. After that, only the RLn-periodic orbit exists
until the next border collision bifurcation occurs at the curve ξcRLn+1 where a periodic orbit
of type RLn+1 is created. From there on, both orbits coexist until the RLn-periodic orbit
is destroyed at ξdRLn . This is repeated for all n ad infinitum starting with the curve ξcRL,
which is located in the 4th quadrant, and followed by the curve ξdR, which is the (positive)
horizontal axis. Note that, following this point of view, the curve ξcR is in fact the negative
horizontal axis. All other border collision bifurcation curves mentioned above are located
in the first quadrant and accumulate at the vertical axis. Details on how these bifurcation
curves are obtained will be given in §2.4.2 for the case that the functions g` and gr do not
depend on the parameters c`, cr. As already stated in Theorem 2.2.1, all the dynamics
described above disappear exactly at the origin of the parameter space, where only a
stable ixed point exists.

Obviously, if one interchanges ` by r in conditions C.2 and C.3 (decreasing-increasing
case) and L by R everything above holds. That is, periodic orbits of type RLn become
periodic orbits of type LRn.

Regarding what has been said in the introduction, we will refer to the point (c`, cr) =
(0, 0) as a Big Bang bifurcation. In particular, for the situation described above one has
the following

Definition 2.2.5. Let B be a point in a 2-dimensional parameter space such that the
bifurcation scenario along the boundary of an arbitrary small neighborhood of B is equiv-
alent to the one described in Theorem 2.2.1 for the origin. Then we will say that there
exists a big bang bifurcation of period incrementing type in B.

Then one can formulate Theorem 2.2.1 in a more compact form as
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Theorem 2.2.2. For a map of type (2.2.1) which satisfies the conditions C.1–C.3, the
origin of the parameter space cr × c` represents a big bang bifurcation point of the period
incrementing type.

2.3 Increasing-decreasing globally-contracting maps

As already mentioned in the introduction, in this section we will prove Theorem 2.2.2
hardening the conditions C.1–C.3. On one hand, we will assume gi to be globally con-
tracting and not only near x = 0. In addition, we will omit the dependency of gi on
the parameters. Then, in §2.4.1 using a simple result (Lemma 2.4.1) we will see that
Theorem 2.2.2 also holds under these assumptions (Corollary 2.4.1). Finally, using a per-
turbation argument, we will prove Theorem 2.2.2 for the conditions C.1–C.3.
Before going into details, let us state the strategy that we are going to follow. In order
to show that only RLn-periodic orbits are possible for c`, cr > 0, we will show that other
type of periodic orbits can not exist (Lemmas 2.3.1, 2.3.2 and 2.3.3). This permits us
using the map fn` (fr) to show in Lemma 2.3.6 that only a periodic orbit of type RLn can
exist for some n. After that, considering the sequence of preimages of 0 under the action
of f`, we will see that RLn-periodic orbits exist for every n (Lemma 2.3.7), that they are
created and destroyed via border collision bifurcations and that at most two of them can
coexist (Lemma 2.3.5).

Let us consider a map as defined in (2.2.1) but relaxing the dependency on the pa-
rameters

f(x; c`, cr) =

{
c` + g`(x) =: f`(x; c`) if x ≤ 0
−cr + gr(x) =: fr(x; cr) if x > 0

(2.3.1)

such that

C.1’ g`(x) and gr(x) are C∞(R) functions such that gr(0) = g`(0) = 0

C.2’ 0 < g′`(x) < 1 if x < 0

C.3’ −1 < g′r(x) < 0 if x > 0

C.4’ limx→±∞ f(x; c`, cr) = −∞.

We start the proofs of these results with the following lemma.

Lemma 2.3.1. Given θ = If (x) with f as defined in (2.3.1) fulfilling the conditions C.1’–
C.4’, if If (x)(i) = R and cr > 0 then If (x)(i + 1) = L. That is, no consecutive R’s are
possible in θ.

Proof. Obvious, as (0,∞) is mapped into (−∞, 0).
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Figure 2.2: “Trapped” orbit

Remark 2.3.1. Note that the previous Lemma does not need If (x) to be a periodic se-
quence.

Lemma 2.3.1 obviously prohibits Rn-periodic orbits to exist. Although two consecu-
tives L’s are possible, Ln-periodic orbits are not, as the next result shows.

Lemma 2.3.2. If x belongs to a periodic orbit of a map f as defined in (2.3.1) fulfilling
the conditions C.1’–C.4’, then, if c` > 0 there exists an i such that If (x)(i) = R.

Proof. If x > 0, then one has If (x)(0) = R. Otherwise, as f` is monotonically increasing
with slope less than one and f`(0) > 0, further iterates of x under the action of f` will
necessarily reach the positive domain.

As a next step we show now that the word RLnRLn can not be contained in any
periodic orbit. It is worth to emphasize that with such a word, we obviously refer here
(and in the following) to the compact representation, that is, it has to be followed by
an R, because a successive L would lead to the word RLnRLn+1. This result is shown
in the next Lemma based on a similar one presented in [GH94]. It is stated there using
geometrical arguments in the Lorenz template that similar orbits are not possible for a
three-dimensional flow undergoing a homoclinic bifurcation of the single twisted butterfly
type. By contrast, we will use here only the nature of the map to prove it.

Lemma 2.3.3. If f is of type (2.3.1) with c`, cr > 0, holding C.1’–C.4’, and there exists
x1 such that If (x1) = θ, then the word RLnRLn can not be contained in θ.

Proof. Let us suppose that there exists x1 such that If (x1) = θ with θ = RLnRLnθ2 for
some finite word θ2. Note that using the relation ∼ one can consider that θ is given in
this form. Let us write this periodic orbit as

x1, y
1
1, y

2
1, . . . , y

n
1 , x2, y

1
2, y

2
2, . . . , y

n
2︸ ︷︷ ︸

RLnRLn

, x3, . . . ,︸ ︷︷ ︸
θ2

x1, . . .︸ ︷︷ ︸
RLnRLn

, . . . ,
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where xi > 0 and yji < 0 (see Fig. 2.2). Let us also assume that x1 < x2 (otherwise
the same argument can be performed with the points x2 and x3) and let us iterate the
whole interval [x1, x2]. As fr is decreasing and cr > 0, fr([x1, x2]) = [y1

2, y
1
1] with fr(x2) =

y1
2 < fr(x1) = y1

1 < 0, the interval is twisted. Moreover, as fr and f` are, respectively,
decreasing and increasing contracting functions, we have

µ([x1, x2]) > µ([y1
2, y

1
1]) > µ([y2

2, y
2
1]) > · · · > µ([yn2 , y

n
1 ]) > µ([x3, x2]),

where µ([a, b]) = |b− a| is the length of the interval [a, b].
Now, as f` preserves orientation and the length of [x1, x2] is decreased, x3 ∈ (x1, x2)

and therefore y1
3 = fr(x3) needs also n iterations to return to the right side.

Repeating the same argument with [x3, x2], one has that fnl (y1
3) = x4 ∈ (x3, x2).

Iterating the argument, the orbit of x1 will be “trapped” in (x3, x2) and will never reach
x1 again, so it can not be periodic.

Remark 2.3.2. Note that it is crucial in the last proof that both points x1 and x2 return
to the right domain (0,∞) after exactly the same number n of iterations under the action
of f`. That is, the interval fm([x1, x2]) remains connected for all m.

Before considering periodic sequences containing the word RLnRLm with n 6= m,
let us state some properties and definitions of maps of type (2.3.1) fulfilling the condi-
tions C.1’–C.4’.
We first note that the left branch f` reaches its maximum value at x = 0 (f`(0) = c` > 0)
and, therefore, when a point y < 0 is re-injected into the right domain by f` it has to be
necessarily in (0, c`]. On the other hand, as fr is monotonically decreasing, every point
x ∈ (0, c`] will be injected into the left domain in the interval [ν, 0], where ν = fr(c`) < 0.
Hence, the interval [ν, c`] acts as an “absorbing” interval as all orbits starting at any point
x ∈ R will reach it after some number of iterations and will never leave it. Therefore we
have the following lemma.

Lemma 2.3.4. Let f(x) be a map of type (2.3.1) which fulfills the conditions C.1’–
C.4’ and let ν = fr(c`). For every x ∈ R there exists an m0 such that fm(x) ∈ [ν, c`] ∀m ≥
m0. Therefore, the map f can be considered as a map on the interval [ν, c`]:

f : [ν, c`]→ [ν, c`]

Remark 2.3.3. Note that this global reduction is true as the functions g`/gr are glob-
ally increasing/decreasing and contractive (C.1’–C.4’). In the next section, where the
conditions C.1’–C.4’ are going to be relaxed, this reduction will be valid only locally.

Let us now consider the sequences {an} and {bn} formed, respectively, by the preimages
of 0 by the left branch and by the preimages of these preimages by the right branch

a0 = 0, an = f−1
` (an−1) with n > 0, (2.3.2)

bn = f−1
r (an) with n ≥ n0, (2.3.3)
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a1a2a3a4a5 b2 b3 b4

y = x

fℓ
fr

· · ·· · ·

Figure 2.3: Definition of the sequences {an} and {bn}. The dotted box corresponds to
the absorbing interval.

with some n0 as explained below (see Fig. 2.3). Note that, as f` is a monotonically
increasing function, if c` > 0 the sequence {an} verifies an+1 < an ≤ 0 ∀n ≥ 03. Although
the preimages of 0 by the left branch (an) exist ∀n, bn is defined for n ≥ n0 where n0 is
such that an0 ≤ −cr < an0−1.
Due to the contractiveness of both functions f` and fr, the following inequalities hold

µ([an+1, an])

µ([an, an−1])
> 1, n > 0 (2.3.4)

µ([bn, bn+1])

µ([bn−1, bn])
> 1, n > n0.

The sequence {an} defined in Eq. (2.3.2) splits the interval (−∞, 0] into sub-intervals
of the form (an+1, an] (see Fig. 2.3) such that ∀y ∈ (an+1, an] the number of iterations
needed for y to return to the right domain is exactly n+1. On the other hand, the intervals
(0, bn0) and [bn, bn+1) with n ≥ n0, form a partition of (0,∞), such that ∀x ∈ [bn, bn+1)
the point fr(x) needs exactly n+ 1 iterations by f` to return to the positive domain.

For a fixed value (c`, cr) ∈ R+ × R+, the number of iterations that a periodic orbit
can perform in the negative domain is determined by the number of elements of the
sequence {bn} contained in the absorbing interval [ν, c`]. For example if b2 and b3 would
be contained in the absorbing interval [ν, cl], then the number of iterations of a periodic

3Note that f0(0) = 0 as the function f0(x) is the identity.
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0aj+1 aj aj−1 a2 a1 cℓ

fℓfℓfℓfℓfℓ

fr

Figure 2.4: Backward and forward iterates of (0, c`]. fr((0, c`]) (dark segment) is smaller
than f−n` ((0, c`]) ∀n. Therefore, at most one aj can be reached by fr((0, c`]).

orbit can be two, three or four. However, as the next result shows, at most one element
of the sequence {bn} can be contained in the absorbing interval [ν, c`].

Lemma 2.3.5. If f is a map of type (2.3.1) fulfilling conditions C.1’–C.4’, then there
exists at most one aj (equiv. bj) such that aj ∈ fr ((0, c`]) (equiv. bj ∈ (0, c`]).

Proof. Recalling that c` = f`(0), one has (see Fig. 2.4)

[an+1, an] = f−1
` ([an, an−1])[

a1, 0] = f−1
` ([0, c`]).

Using the property shown in Eq. (2.3.4) one has

µ([0, c`]) < µ([an+1, an]) ∀n,

and, since fr is a contractive function one obtains

µ(fr((0, c`]) < µ([an+1, an]) ∀n.

Therefore, at most one an can be located in f((0, c`]).

For a fixed j, the uniqueness of such a bj (in case of existence) in the last Lemma
implies that the periodic sequences of a map under the considered conditions can be
either RLj, RLj+1 or sequences containing these two words only. However, what we
want to show is that the last case is not possible and in fact the only admissible periodic
sequences are exactly RLj and RLj+1. Therefore, let us consider the two only possible
cases: for a certain j, either (0, c`] ⊂ (bj, bj+1) (which means bj = 0 or bj /∈ [0, c`]) or
(0, c`] = (0, bj) ∪ [bj, c`] (which means bj ∈ (0, c`]) (c` < bj+1), which is the case shown in
Fig. 2.3.
In the first case, as the periodic orbits have to be contained in the interval [ν, c`], they
always need the same number of iterations on the negative domain and the result comes
from Lemmas 2.3.1, 2.3.2 and 2.3.3.
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In the second case, we have to show that if a periodic orbit reaches (0, bj) it can not
reach [bj, c`] and vice versa, that is, once an orbit enters the absorbing interval [ν, c`], the
number of iterations needed to return to the positive domain is preserved and is either j
or j + 1. Both cases are included in the following lemma.

Lemma 2.3.6. Let f be a map as defined in (2.3.1) fulfilling conditions C.1’–C.4’. If
x ∈ R belongs to a periodic orbit of f then there exists n > 0 such that If (x) = RLn up
to shift-equivalence.

0aj a1 cℓbjν aj+δ

fℓfℓ

fℓ

fr

f j−1
ℓ

f j−1
ℓ

f j
ℓ

f j+1
ℓ

Figure 2.5: The interval fr((0, c`]) is split when it returns to the right domain.

Proof. If @ aj ∈ fr((0, c`]), then fr ((0, c`]) ⊂ (an, an−1) for some n and

fn` (fr (0, c`])) ⊂ (0, c`].

Due to the contractiveness, the map fn` fr(x) has a fixed point and f an LnR-periodic
orbit. By Lemmas 2.3.1, 2.3.2 and 2.3.3, it is the unique one.

Now let us suppose that there exists aj ∈ fr((0, c`]) which, by Lemma 2.3.5, must be
unique. We also have a unique bj ∈ (0, c`]. As fr is monotonously decreasing and thus
the interval (0, c`] is inverted, we can write

fr((0, c`]) = [ν, aj + δ)

for some δ > 0.
As f` is continuous in (−∞, 0] and f`(an) = an−1 ∀n > 1, the interval fn` ([ν, aj + δ))
remains connected and contains aj−n for n = 1, . . . , j (see Fig. 2.5). For n = j, the interval
contains 0 and therefore it contains positive and negative points. The positive ones are
immediately mapped into (aj, aj+δ) by fr in such a way that fr(0

+) = (aj+δ)
−. Negative

points need one more iteration by f` and will be mapped into (bj, c`] with f`(0
−) = c−` , so
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the initial interval is split. After that, these points will be mapped into [ν, aj) verifying
that fr(c

−
` ) = ν+. Summarizing,

fr((0, bj)) = (aj, aj + δ)

fr([bj, c`] = [ν, aj]

and

f j+1
` ([ν, aj]) ⊂ [bj, c`]

f j` ((aj, aj + δ)) ⊂ (0, bj),

so

f j+1
` (fr([bj, c`])) ⊂ [bj, c`]

f j` (fr(0, bj)) ⊂ (0, bj),

and, for an orbit starting in (0, c`], the number of steps performed in the negative domain
before being re-injected to the positive domain will remain constant and equal to j or j+1
depending on whether it starts in (0, bj) or [bj, c`], respectively. Therefore, only symbolic
sequences of the form RLjRLj. . . or RLj+1RLj+1. . . with starting points in (0, c`] are
possible.

As it has been proven above, that the number of steps on the left side of a periodic
orbit must be preserved, we can apply Lemma 2.3.3 to show that if x belongs to a periodic
orbit of a map under the considered conditions, then necessarily If (x) = RLn for some
n > 0.

Now we ask about the reciprocal of Lemma 2.3.6, that is, we want to show that periodic
orbits of type RLn exist ∀n > 0.

Lemma 2.3.7. Let f be of the form defined in (2.3.1) and fulfilling conditions C.1’–C.4’.
Then, for every n ≥ 1 and every c` > 0, there exists cr > 0 such that f possesses an orbit
with the symbolic sequence RLn.

The proof of this Lemma is in fact an extension of the arguments presented in [Hom96]
§3.3.

Proof. It is clear that for every n ≥ 2 and every c` > 0 there exists cr > 0 such that

fr((0, c`]) ∩ [an, an−1] 6= ∅,

which can be given due to one of the next three situations (see Figs. 2.4 and 2.5)

S.1 an−1 ∈ fr((0, c`])
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S.2 fr((0, c`]) ⊂ (an, an−1)

S.3 an ∈ fr((0, c`])

If S.1 holds, bn−1 ∈ (0, c`] and

fn` fr : [bn−1, c`] −→ [bn−1, c`]

fn−1
` fr : (0, bn−1) −→ (0, bn−1),

are continuous contracting functions which must have a unique (stable) fixed point. There-
fore, two stable periodic orbits RLn and RLn−1 coexist. Note that for n = 2 this proves
also the existence of a RL orbit.
In the second case (S.2), bn−1 /∈ (0, c`] ([0, c`] ⊂ (bn−1, bn)) and

fn` fr : (0, c`] −→ (0, c`]

is a continuous contracting function which also must have a unique (stable) fixed point.
In this case, there exists a unique periodic orbit of type RLn which is the unique attractor
in (0, c`].
Finally, if S.3 holds, replacing n by n − 1 and arguing as in S.1, one has that a stable
periodic orbit of type RLn coexists with a stable RLn+1-periodic one.

Remark 2.3.4. By contrast to all orbits RLn with n ≥ 2, the periodic orbit RL exists
not only for cr > 0 but also for cr ≤ 0. In that case, it coexists with the fixed point R
(L0R).

Remark 2.3.5. Note that the transitions between cases S.1, S.2 and S.3 are given by
border collision bifurcations where the respective periodic orbits are created or destroyed
when they collide with the boundary x = 0. This defines the curves ξc and ξd used in
Theorem 2.2.1. See §2.4.2 for more details.

Remark 2.3.6. As it is known, invariant objects of piecewise-smooth systems do not
necessarily have to be separated by another invariant object. In this case, the coexistence
of stable periodic objects may also be separated by the discontinuity (and its preimages)
(see [dBBCK08] for an extensive overview about piecewise-smooth dynamics).

Theorem 2.3.1. For a map of type (2.3.1) which fulfills the conditions C.1’–C.4’, the
origin of the parameter space c` × cr represents a big bang bifurcation point of the period
incrementing type.

Proof. It is clear that for (c`, cr) = (0, 0) the map f possesses a stable fixed point at x = 0.
In a first step we have to show that an infinite number of bifurcation curves separating
existence regions of different periodic orbits are issuing from the origin. In a second
step we have to show that a smooth change of the parameters across the bifurcation curve
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confining the regions of existence of a uniqueRLn orbit lead to the creation of (coexisting)
RLn+1- or RLn−1-periodic orbits.

The key to show the first step is the fact that the sequence {an} collapses to the origin
as c` → 0, that is

lim
c`→0

an = 0 ∀n ≥ 1.

This is due to the continuity of f` and the fact that it is a monotonically increasing
function. As [a1, 0] = f−1

` ([0, c`]) (compare Fig. 2.4), it is clear that a1 → 0 as c` → 0.
Now, iterating the argument and using that an = f−1

` (an−1), it is clear that for every
ε > 0, arbitrarily small, there exists c`(ε) small enough such that −ε < an < 0. By
Lemma 2.3.7, there exists cr such that fr((0, c`]) contains an and, therefore, a periodic
orbit of type RLn exists.
On the other hand, it is clear that cr → 0 as an → 0 and, therefore, a RLn-periodic
orbit exists for every n for values of (c`, cr) arbitrarily close to the origin. Finally, if
(c`, cr) = (0, 0), the map possesses a stable fixed point which absorbs all orbits and thus
all periodic orbits disappear at that point.

2.4 Extension of the result

2.4.1 Increasing-decreasing locally-contracting maps

In this section we relax the global monotonically-contracting conditions C.1’–C.4’ to be
fulfilled near the origin and show that the results of the previous section are valid suffi-
ciently close to the origin of the parameter space. Thus we restrict ourselves to maps of
type (2.3.1) fulfilling

C.1” g` and gr are C∞(R) functions such that g`(0) = gr(0) = 0

C.2” There exists ε` > 0 such that 0 < g′`(x) < 1 ∀x ∈ (−ε`, 0)

C.3” There exists εr > 0 such that −1 < g′r(x) < 0 ∀x ∈ (0, εr)

Due to the smoothness of functions f` and fr near the origin, there exists an open neighbor-
hood of this point where both functions are contracting and which contains the absorbing
interval [ν, c`] if cr and c` are small enough.
On the other hand, the values of cr given by Lemma 2.3.7 tend to 0 as c` → 0+, and
therefore all results of the previous section hold under these conditions.
From the previous arguments one has the next result.

Lemma 2.4.1. Let f be a map of type (2.3.1) keeping conditions C.1”–C.3”. Then there
exist c0

` and c0
r such that if 0 < c` < c0

` and 0 < cr < c0
r f is contracting in [ν, c`]. Moreover,

for every cr < c0
r and every n, there exists 0 < ε < c0

` such that aj ∈ [ν, 0] ∀j ≤ n if c` < ε.
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Corollary 2.4.1. Under conditions C.1”–C.3”, a map of type (2.3.1) undergoes a big bang
bifurcation of the period incrementing type at the origin of the parameter space c` × cr.

Remark 2.4.1. If one changes condition C.3’ by gr to be a constant function for x ≥ 0,
then all the results presented above are still valid except for one detail. In such a case, one
has only to take into account that, as fr((0, c`]) would be a single point. Then, conditions
S.1 and S.3 in the proof of Lemma 2.3.7 become an−1 = fr((0, c`]) and an = fr((0, c`]),
respectively, preventing the coexistence between two different orbits. Therefore, (b) in
Theorem 2.2.1 no longer holds as ξcRLn−1 = ξdRLn. Such a situation has been referred to in
the literature ([AS06a]) as pure period incrementing scenario, and therefore the origin of
the parameter space represents a pure period incrementing big bang bifurcation.

Recalling Remark 2.3.5, the orbits given in Theorem 2.2.2 are created and destroyed
at border collision bifurcations curves, which are mentioned in the first version of the
same result, Theorem 2.2.1. In the next section, approximating them up to first order,
we will give details on how they are obtained.

2.4.2 Border collision curves near the origin

Given n > 0 and c` > 0 (which we will always assume to be small enough), we know
(Lemma 2.3.7) that there exists cr > 0 such that one of the next cases hold

S.1 an−1 ∈ fr((0, c`])

S.2 fr((0, c`]) ⊂ (an, an−1)

S.3 an ∈ fr((0, c`])

implying the existence of a RLn-periodic orbit. As has been shown in the proof of
Lemma 2.3.7, every case above leads to different dynamics. Therefore, the limiting pa-
rameter values define a (border collision) bifurcation. Then for each of the cases above,
for every c` we will find the extremal value of cr and obtain the bifurcation curves, ξc,dRLn
at which an RLn orbit is created or destroyed.

The smallest value of cr which leads S.1 to be fulfilled is given by

fr(c`) = an−1 (2.4.1)

and corresponds to the creation of the periodic orbit RLn coexisting with the periodic
orbit RLn−1. The transition between S.1 to S.2 is given by

fr(0) = an−1
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where the periodic orbit RLn−1 is destroyed leading the periodic orbit RLn to be the
unique attractor (near the origin).
Increasing cr, one finds the value of this parameter which satisfies the condition

fr(c`) = an.

At this parameter value, representing the transition from S.2 to S.3, the periodic orbit
RLn+1 is created and coexists with RLn.
Finally, the next bifurcation is given by

fr(0) = an (2.4.2)

where the periodic orbit RLn is destroyed as S.3 no longer holds.
Summarizing, for every c` > 0 and n > 0, Eqs. (2.4.1) and (2.4.2) give the value of cr
for the border collision bifurcations where, respectively, the RLn-periodic orbit is created
and destroyed. Therefore, in parameter space, the respective border collision bifurcation
curves in a sufficiently small open set U of the origin will be given by

ξcRLn = {(c`, cr) ∈ U , c` > 0 | fr(c`) = an−1}
ξdRLn = {(c`, cr) ∈ U , c` > 0 | fr(0) = an}

However, in order to obtain first order approximation of these curves, it is more con-
venient to consider the equations

F c(c`, cr) := fn−1
` (fr(c`)) = 0 (2.4.3)

F d(c`, cr) := fn` fr(0) = 0 (2.4.4)

which are equivalent to (2.4.1) and (2.4.2), respectively. In addition, as

∂F c

∂cr
(0, 0) =

{
−1 if n = 1
−g′`(0)n−1 if n > 1

∂F d

∂cr
(0, 0) = −g′`(0)n,

one can always write cr as a function of c` if g′`(0) 6= 0. Therefore, using

∂F c

∂c`
(0, 0) =





g′r(0) if n = 1
1 + g′`(0) + g′`(0)2 + · · ·
· · ·+ g′`(0)n−1g′r(0) if n > 1

(2.4.5)

∂F d

∂c`
(0, 0) = 1 + g′`(0) + g′`(0)2 + · · ·+ g′`(0)n−1 + g′`(0)n > 0 (2.4.6)

and applying the Implicit Function Theorem, the first order approximation of the bifur-
cation curves are given by the expressions
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cr = ξcRLn(c`) = −
∂F c

∂c`
∂F c

∂cr

c` +O(c2
`)

=
1 + g′`(0) + g′`(0)2 + · · ·+ g′`(0)n−1g′r(0)

g′`(0)n−1
c` +O(c2

`) (2.4.7)

cr = ξdRLn(c`) = −
∂F d

∂c`
∂F d

∂cr

c` +O(c2
`)

=
1 + g′`(0) + g′`(0)2 + · · ·+ g′`(0)n−1 + g′`(0)n

g′`(0)n
c` +O(c2

`). (2.4.8)

Remark 2.4.2. In the case that g′`(0) = 0, all the bifurcation curves ξc,dRLn, with n > 1, are
vertical at the origin and one can not proceed with this approach to obtain approximated
expressions. However, one can alway obtain c` as a function of cr instead, although, in
order to distinguish between the curves, a higher order analysis becomes necessary because
all first order approximations lead to the vertical axis.

Remark 2.4.3. Recalling that f 0
` = Id, for n = 1 one has that

∂F c

∂c`
(0, 0) = g′r(0)

∂F c

∂cr
(0, 0) = −1.

Hence, the curve (2.4.7) becomes

ξcRL(c`) = g′r(0)c` +O(c2
`),

which, assuming g′r(0) 6= 0, has negative slope. Thus, as mentioned in the discussion
below Theorem 2.2.1, this bifurcation curve is located in the fourth quadrant.
Using n = 0 in Eq. (2.4.4), it clearly comes that the curve ξdR is the horizontal axis,
cr = 0.
As one can see from Eqs. (2.4.7)-(2.4.8), all other bifurcation curves have positive slope
and, hence, are located in the first quadrant.

2.4.3 Proof of Theorem 2.2.2

In order to prove Theorem 2.2.2 we first consider a map of the form (2.2.1) and obtain
from it a new map

f̃(x) =

{
c` + g`(x; 0, 0) =: f̃`(x; c`) x < 0

−cr + gr(x; 0, 0) =: f̃r(x; cr) x > 0
(2.4.9)
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which is of type (2.3.1) and fulfills conditions C.1”–C.3”. Note in particular that con-
ditions C.2 and C.3 for a map of type (2.2.1) imply that (2.4.9) fulfills conditions C.2”
and C.3”. Therefore, Corollary 2.4.1 applies and the system (2.4.9) undergoes a big bang
bifurcation of the period incrementing type at the origin of the parameter space c` × cr.
Then, one only needs to show that all the bifurcation curves issuing from the origin of
the parameter space also exist for the system (2.2.1). For that purpose, let us consider
for example the bifurcation curve defined by the equation

f̃n` (f̃r(0; cr); c`) = 0. (2.4.10)

which, for convenience, we solve isolating c` as a function of cr. Thus, recalling Re-
marks 2.4.2 and 2.4.3, we know that (2.4.10) possesses a (unique) solution c∗` for every
cr arbitrarily small and for every n ≥ 1, defining the border collision bifurcation curve
c` = ξ̃dRLn(cr). Now, we wonder whether the corresponding equation

fn` (fr(0; c`, cr); c`, cr) = 0 (2.4.11)

that defines the corresponding bifurcation curve for the original system can also be solved
for c` for every cr small. Note that the functions f` and fr can be written as

f`(x; c`, cr) = f̃`(x; c`) +G`(x; c`, cr)

fr(x; c`, cr) = f̃r(x; cr) +Gr(x; c`, cr),

with Gi(x; 0, 0) = 0 and ∂Gi

∂j
(0; 0, 0) = 0, i ∈ {`, r} j ∈ {x, c`, cr}. As a consequence of

that, a straight forward calculation shows that equation (2.4.11) can be written as

F (c`, cr) := fn` (fr(0; c`, cr); c`, cr) = f̃n` (f̃r(0; cr); c`) +G(c`, cr) = 0

with G containing only higher order terms, that is, G(0, 0) = 0 and ∂G
∂ci

(0, 0) = 0 i ∈ {`, r}.
Now, as

F (0, 0) = 0,
∂F

∂c`
(0, 0) 6= 0,

one can apply the Implicit Function Theorem at (c`, cr) = (0, 0) and show that Eq. (2.4.11)
can be solved for c`. In addition, the fact that the limit

lim
x→0

g`(x; c`, cr)

g`(x; 0, 0)

exists, ensures us that this solution will be of the form

c` = ξdRLn(cr) = ξ̃dRLn(cr) + Ψ(cr). (2.4.12)

where Ψ(cr) is such that

lim
cr→0

Ψ(cr)

ξ̃dRLn(cr)
= 0,
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that is, Ψ(cr) depends on cr in higher order terms than ξ̃dRLn(cr) does. Therefore, by
considering cr small enough, it is clear that both bifurcation curves are arbitrarily close
to each other.
Finally, arguing similarly with the other bifurcation curves, it comes that the bifurcation
scenarios of systems (2.2.1) and (2.3.1) near (c`, cr) = (0, 0) are the same, which proves
the result.

2.5 Examples

In this section we will illustrate the results obtained so far with two examples.

2.5.1 Example 1

Let us consider

f(x) =

{
c` + 9

10
sin(x) =: f`(x) if x ≤ 0

−cr − 1
2

sin(x) =: fr(x) if x > 0
(2.5.1)

shown in Fig. 2.6, which fulfills the conditions C.1”–C.3” and, in particular, C.1–C.3.

  

 

  

  

x

f(x)

y = x

cℓ

cr

Figure 2.6: System function of Example 1 defined in Eq. (2.5.1)

As one can see in Fig. 2.7, there exists a big bang bifurcation of the period incre-
menting type at the origin of the parameter space c` × cr, as predicted by Theorem 2.2.2
or Corollary 2.4.1, which also applies. A global overview of the bifurcation scenario is
presented in Fig. 2.7(a), and a magnification near the origin of this space is shown in
Fig. 2.7(b). There one can observe the expected infinite number of border collision bifur-
cation curves separating the regions of existence of the different periodic orbits. There it
is also shown the first order approximation of the bifurcation curves reported in §2.4.2.
As one can see in the one-dimensional bifurcation diagram presented in Fig. 2.7(c) along
the curve parameterized by φ in Fig. 2.7(b), the periodic orbits that exist near the origin
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are of type RLn. As labeled in the figures, there exist regions where only one periodic
orbit of type RLn exists, and there exist other regions where two periodic orbits of type
RLn and RLn+1 coexist.

(a)

(b)

(c)

(d)

Figure 2.7: (a): border collision bifurcation curves for Example 1. A blow up of the
neighborhood of the point A is shown in Fig. 2.9(a). (b): numerical (black) and first order
approximations of the analytical (gray) border collision bifurcation curves near the origin.
(c): bifurcation diagram through the curve surrounding the origin in (b) parameterized
by φ anti-clockwise. The gray regions indicate coexistence between two periodic orbits
(d): periods of the detected orbits in (c).

As one can see in Fig. 2.7(a), near (0, π) there exists another point where an infinite
number of bifurcation curves seem to emerge from.

In order to investigate this point in more detail and see whether the result presented
above can be applied, let us first note that it is given by the intersection between the
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border collision bifurcation curves ξdR (the vertical axis) and ξdRL. This means that, at
this point, a periodic orbit of type RL collides with the boundary together with the fixed
point L. This is exactly what we have considered in this work, the simultaneous collision
of two fixed points with the boundary. Let us therefore consider the following composite
map

f2(x) =

{
f`(x) if x ≤ 0
f`fr(x) if x > 0

(2.5.2)

which collapses the RL-periodic orbit of (2.5.1) to the fixed point R of (2.5.2). Easily, one
sees that, for (c`, cr) = (0+, π−), f`(0) = 0+, f`fr(0) = 0−, f ′`(0

−) = 9
10

and (f`fr)
′(0+) =

9
20

. This means that f2(x) possesses two stable fixed points which, when increasing c` and
decreasing cr through (0, π), collide simultaneously with the boundary x = 0. However,
f2(x) does not fulfill the conditions of Theorem 2.2.2 as the eigenvalues associated with
both fixed points are both positive.

As mentioned in the introduction, this situation leads to the so-called period adding big
bang bifurcation and the orbits are organized by a Farey-tree-like structure. That is, near
the big bang bifurcation, there exist an infinite number of bifurcation curves separating
existence regions of different periodic orbits in such a way that, in between two regions
there exists another region locating a unique periodic orbit obtained by “gluing” them
and thus having a period which results from the addition of the periods of those. This
implies that between two different bifurcation curves there exist an infinite number of
them (see for example [AS06a] for an extended explanation). This is shown in Fig. 2.8 by
the one-dimensional bifurcation diagram along the curve shown in Fig. 2.7(a).
From the global overview of the bifurcation scenario shown in Fig. 2.7(a) it seems that all

the bifurcation curves created at (0, π) disappear at the intersection points of the curves
ξdRLn and ξcRLn+1 . However, as we will immediately show, this can not be the case.
Let us take a closer look for example at the point labeled with A in Fig. 2.7(a) whose
surrounding is magnified in Fig. 2.9(a). As this point is given by the intersection of the
curves ξcRL2 and ξdRL, it represents the simultaneous collision of the periodic orbits RL2

and RL with the boundary. Therefore, the composite map

f3(x) =

{
f`frf`(x) if x ≤ 0
f`fr(x) if x > 0

(2.5.3)

possesses two fixed points colliding with the boundary x = 0 at the point A. The coordi-
nates of A can be calculated solving the equations

{
f`frf`(0) = 0
f`fr(0) = 0

,

which leads to A = (cA` , c
A
r ) ' (0.88325, 1.37759).

One could also consider the iterated functions frf`f` and f`f`fr for the left branch.
However, one can see that the first option is the proper way of writing the corresponding
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(a) (b)

Figure 2.8: Bifurcation structure around the period adding big bang bifurcation occurring
at (0, π) for Example 1. (a) Bifurcation diagram along the curve labeled in Fig. 2.7(a)
and parameterized clockwise by φ . (b) Periods of the detected periodic orbits.

iterate, as it collapses the corresponding periodic orbit of (2.5.1) to that fixed point of
the third iterate which collides with the boundary x = 0 at the point A.

Expanding the gaps and the slopes of each branch of f3(x) at the discontinuity near
A, one has

f`frf`(0)(c̃`, c̃r) ' 1.05483c̃` + 0.17280c̃r +O(c̃2
` , c̃

2
r, c̃`c̃r) (2.5.4)

(f`frf`)
′(0)(c̃`, c̃r) ' 0.04935 + 0.01994c̃` +

0.25224c̃r +O(c̃2
` , c̃

2
r, c̃`c̃r) (2.5.5)

f`fr(0)(c̃`, c̃r) ' c̃` − 0.17280c̃r +O(c̃2
r) (2.5.6)

(f`fr)
′(0)(c̃`, c̃r) ' −0.086401 + 0.44162c̃r +O(c̃2

r), (2.5.7)

where c̃` = c` − cA` and c̃r = cr − cAr . From Eqs. (2.5.4) and (2.5.6), it is clear that there
exist two directions in the parameter space (presented in Fig. 2.9(a) as two dotted straight
lines) along which the position of the fixed points with respect the boundary (the offsets at
the origin) can be locally varied independently. This means that the re-parameterization

ĉ` := f`frf`(0) = 1.05483c̃` + 0.17280c̃r + h.o.t.

ĉr := f`fr(0) = c̃` − 0.17280c̃r + h.o.t.

writes f3 in the form of Eq. (2.2.1) fulfilling C.1. In addition, it comes from equations
(2.5.5) and (2.5.7) that the conditions C.2 and C.3 are also fulfilled: the colliding fixed
points of (2.5.3) are stable and have associated eigenvalues of different sign. As a con-
sequence, Theorem 2.2.2 applies to f3 and, therefore, the point A represents a big bang



36 2.5. EXAMPLES

bifurcation of the incrementing type for the original map (2.5.1).
As the colliding fixed points of (2.5.3) with positive associated eigenvalue is L, the peri-
odic orbits undergoing the incrementing scenario for f3 are of the form RLn. This implies
that the periodic orbits for the original map (2.5.1) emerging at the point A are of type
RL(RL2)n, which are shift-equivalent to LR(LRL)n (see Definition 2.2.3). This is shown
in Fig. 2.9(b) where a one-dimensional bifurcation diagram is performed along the corre-
sponding segment labeled in Fig. 2.9(a). As the coexistence regions between the periodic
orbits of type RL(RL2)n and RL(RL2)n+1 can not be observed there, a magnification
for the case n = 2 is shown in Fig. 2.9(c).

However, the question arises, where do all other border collision bifurcation curves
created at (0, π) end? As shown in Fig. 2.9(d), when moving away from A, there exists
a point between the two segments labeled in Fig. 2.9(a) where the coexistence shown in
Fig. 2.9(c) disappears. This point is given by the intersection of the corresponding curves
ξcRL(RL2)3 and ξdRL(RL2)2 exactly as happened at the point A with the curves ξcRL2 and ξdRL.
Such a point would be the analogous to the one given by the intersection of the curves
ξcRL(RL2) and ξdRL labeled with B in Fig. 2.9(a). This self similarity suggests that this
process takes place for every border collision curve, so forming an infinite tree of big bang
bifurcations of period incrementing type whose mother node is the point (0, 0), generating
the complete period adding structure absorbed by the point (0, π).

2.5.2 Example 2

Let us now consider a second example fulfilling conditions C.1”–C.3” (and C.1–C.3)

f(x) =

{
c` + 2

5
x(x+ 2) =: f`(x) if x ≤ 0

−cr + 1
2
x(x− 1) =: fr(x) if x > 0

(2.5.8)

which is shown in Fig. 2.10(a).
As expected, the origin of the parameter space c` × cr, presented in Fig. 2.10(b), is

a big bang bifurcation point of the period incrementing type. Moreover, arguing exactly
as before, one can show that the situation between the points (0, 2) and (0, 0) is the
same as in the previous example between (0, π) and (0, 0). This has been validated with
numerical simulations which we do not show as they are equivalent to the ones presented
in Figs. 2.7(b), 2.7(c), 2.7(d) and 2.8. Therefore we omit further comments in that
direction.
However, there exists in the c` axis of Fig. 2.10(b) several points that deserve special
interest. For example, let us consider the point (1, 0). As one can see in Fig. 2.10(b),
this point is given by the collision of the bifurcation curves ξdR (the horizontal axis) and
ξcRL, where the fixed point R and the periodic orbit RL simultaneously collide with the
boundary. Therefore, after re-parameterization along proper directions in the parameter
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(a) (b)

(c) (d)

Figure 2.9: Bifurcation scenario near the point A (see Fig. 2.7(a)). (a): Blow up labeled in
Fig. 2.7(a). The two dotted straight lines are the directions along which the right and left
images of 0 by f3(x) remain (locally) constant. (b): one-dimensional bifurcation diagram
along the segment labeled in (a): period incrementing scenario. (c): magnification of the
coexistence (gray region) between the periodic orbits RL(RL2)2 and RL(RL2)3 shown
in (b). (d): bifurcation diagram along the segment labeled (d) in Fig. 2.9(a); far enough
from A, the period incrementing structure generated at A disappears.
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(a) (b)

Figure 2.10: (a): system function of Example 2 defined in Eq. (2.5.8). (b): border collision
bifurcation curves of Example 2.

space4, the map

f2(x) =

{
frf`(x) if x ≤ 0
fr(x) if x > 0

(2.5.9)

can be written as in (2.2.1) fulfilling C.1. As before, as the colliding periodic orbits are
stable and their associated eigenvalues have the proper signs, conditions C.2 and C.3 are
also fulfilled. Therefore, Theorem 2.2.2 applies and the point (1, 0) represents a big bang
bifurcation of period incrementing type. As the periodic orbit with positive associated
eigenvalue is RL, the periodic orbits of the original map, (2.5.8), emerging at (1, 0) are
of type R(RL)n. This is shown in Figs. 2.11(a) and 2.11(b) through the one-dimensional
bifurcation diagram along the curve labeled in Fig. 2.10(b).

One can proceed analogously and show that the situation is repeated for the other
points, (pn, 0), also located at the horizontal axis of Fig. 2.10(b).
In order to show that, let us consider the equation

fnr f`(0) = fr(0), cr = 0 (2.5.10)

and let pn be the root of the Eq. (2.5.10) which is not a root of the same equation using

4We skip the details as one has just to proceed as in Example 1.



CHAPTER 2. PERIOD INCREMENTING 39

(a)

(b)

(c)

(d)

Figure 2.11: Bifurcation structure around the big bang bifurcation points at (c`, cr) =
(1, 0) ((a) and (b)) and (c`, cr) = (p2, 0) ((c) and (d)). (a) and (c) Bifurcation diagram
along the curves labeled in Fig. 2.10(b). (b) and (d) periods of the periodic orbits. The
gray regions indicate coexistence between two periodic orbits.
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n− 1 instead of n. Then, one can easily see that the map

fn(x) =

{
fnr f`(x) if x ≤ 0
fr(x) if x > 0

(2.5.11)

possesses two colliding fixed points (is continuous at (c`, cr) = (pn, 0)). Again, under
proper re-parameterization, it can be written in the form of (2.2.1) and the conditions
C.1–C.3 hold at (c`, cr) = (pn, 0). Therefore, for every (pn, 0) there exists an arbitrarily
small open set containing that point such that only periodic orbits of type R(RnL)m exist
for all m ≥ 0. Moreover, there exist regions in that open set where two R(RnL)m and

R(RnL)m+1 orbits coexist ∀m ≥ 0.

2.6 Conclusions

In this chapter we have shown that big bang bifurcations occur in low-dimensional piecewise-
smooth systems typically whenever two fixed points cross simultaneously the boundary
and become virtual. This is given by a transverse intersection between two border colli-
sion bifurcation curves when the considered parameters control the distance between the
boundary and the fixed points.
So far we have presented this situation for the one-dimensional case for which the bound-
ary is represented by a single point (x = 0) where the map has a jump discontinuity.
By Theorem 2.2.2, we have explicitly and rigorously characterized the infinite number of
periodic orbits that appear after the collision of two fixed points with the boundary when
they are attracting (the map is locally contractive) and have associated eigenvalues of op-
posite sign: a big bang bifurcation of periodic incrementing type occurs. As mentioned in
Remark 2.4.1, in the case that the branch corresponding to the fixed point with negative
associated eigenvalue is replaced by a constant function in an open set containing x = 0,
the bifurcation scenario remains the same except that the coexistence regions disappear,
and a big bang of the so-called pure incrementing type occurs.
We have also given examples showing that one can consider a proper renormalization of
the map in order to study other big bang bifurcations in the parameter space. In the same
examples we have also checked the result conjectured in the introduction; that is, when
both eigenvalues of the colliding fixed points are positive, then the so-called period adding
big bang bifurcation takes place. A proof of that is left for future work, but in Chapter 3
we present a sketch of it. Using also renormalization arguments we have suggested that
the bifurcation curves issuing from the detected period adding big bang bifurcation are
“collected” by an infinite cascade of period incrementing big bang bifurcations. A rigorous
and more detailed study of this situation will be reported elsewhere.



Chapter 3

A rigorous approach to the period
adding big bang bifurcation and the
extension to 2-dimensional
piecewise-defined maps

3.1 Introduction

In this chapter we discuss several aspects for further research on the topics related with
big bang bifurcations.

In §3.2 we first provide a rigorous proposal for further research in order to extend the
results given in Chapter 2 to the increasing-increasing case, which, as announced in the
Introduction of this thesis, leads to the period adding big bang bifurcation. This type of
bifurcation was introduced in [AS06a] when numerically simulating a discontinuous linear
map. In our approach we propose to study a topological conjugacy between the piecewise-
defined map and a classical Arnol’d circle map, for which the bifurcation scenario is well
known. Hence, we profit in this approach from the classical theory developed so far to
provide generic condition of the occurrence of big bang bifurcation of the period adding
type in one-dimensional maps.

As it was already noted in these mentioned chapters, big bang bifurcation are basically
given by the simultaneous collision of two invariant objects with a boundary. When these
are fixed points, this necessary reflects a loss of continuity of the map at this intersection
for one-dimensional maps. However, this is not the case when considering higher dimen-
sions, where it turns out that continuity at the simultaneous collision is not necessary to
undergo big bang bifurcations.
In §3.3, we propose an extension of the results so far understood about big bang bifurca-
tions for one-dimensional piecewise-defined maps to the two-dimensional case.

41
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Figure 3.1: Simultaneous collision of two fixed points with positive associated eigenvalues
with the boundary.

3.2 Period adding big bang bifurcation

As announced in the Introduction of this thesis, the so-called period adding big bang
bifurcation exhibits a much more complicated structure as the period incrementing one
reported in Chapter 2. In this section we first introduce a generic map which depends on
two parameters and we conjecture that, under certain conditions, this map undergoes a
period adding big bang bifurcation. After describing this bifurcation, we provide rigorous
arguments which form a guide to proof this result. A complete extension of it is left as
future work.

As in the case of the period incrementing big bang bifurcation (see Chapter 2), we
consider a piecewise-defined one-dimensional map of the form

f(x; c`, cr) =

{
c` + g`(x) =: f`(x; c`) if x ≤ 0

−cr + gr(x) =: fr(x; cr) if x > 0
(3.2.1)

which reproduces the simultaneous collision of two (attracting) fixed points with the
boundary (see Fig. 3.1). As for the period incrementing case we assume that both fixed
points are attracting, but in this case both have positive associated eigenvalues. Hence,
we assume that the map (3.2.1) fulfills

D.1 g` and gr are smooth functions at x = 0 s.t. g`(0) = gr(0) = 0

D.2 There exists ε` > 0 such that 0 ≤ g′`(x) < 1 ∀x ∈ (−ε`, 0]

D.3 There exists εr > 0 such that 0 ≤ g′r(x) < 1 ∀x ∈ [0, εr)

Then, the origin of the parameter space c` × cr consists on a co-dimension two big bang
bifurcation point of the period adding type. This means that the bifurcation scenario
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around this points is as described below.

Arguing as in §2.4.3, one can show using the implicit function theorem that the
map (3.2.1) is in fact the normal form for the period adding big bang bifurcation. That
is, all the arguments that we provide here for the map (3.2.1) fulfilling conditions D.1–D.3
also hold for the more general map

f(x; c`, cr) =

{
c` + g`(x; c`, cr) =: f`(x; c`, cr) if x ≤ 0
−cr + gr(x; c`, cr) =: fr(x; c`, cr) if x > 0

(3.2.2)

satisfying

D’.1 g` and gr are C∞(R) functions such that for i, j ∈ {`, r}

gi(0; c`, cr) = 0

and the limit

lim
x→0

gi(x; c`, cr)

gi(x; 0, 0)

exists,

D’.2 there exists ε` > 0 such that 0 < g′`(x; c`, cr) < 1 ∀x ∈ (−ε`, 0) if 0 ≤ c`, cr � 1,

D’.3 there exists εr > 0 such that 0 < g′r(x; c`, cr) < 1 ∀x ∈ (0, εr) if 0 ≤ c`, cr � 1,

where

g′(x; c`, cr) =
∂g(x; c`, cr)

∂x
.

We hence proceed arguing for the map (3.2.1) under conditions D.1–D.3.

Similarly as for the period incrementing case, when considering the parameter space
c`× cr one distinguishes 4 different possible scenarios given by the signs of the parameters
c` and cr (see Fig. 3.3). When both are negative, two fixed points, x∗` < 0 and x∗r > 0,
coexist, and their domains of attraction are split by the boundary x = 0. When they have
opposite signs, only one them remains while the other one becomes virtual. Finally, when
both are positive, both fixed points becomes virtual and an infinite number of different
periodic orbits exist in the vicinity of the point (c`, cr) = (0, 0). These are separated by
an infinite number of border collision bifurcation curves, equivalently as in Fig. 3.2.
In Fig. 3.3 we show the bifurcation scenario obtained while varying the parameters c` and
cr along the curve. The periodic orbits that appear along this curve are equivalent to the
bifurcation diagram shown in Fig. 3.3(a) whose periods are given in Fig. 3.3(b). There
one can see that between two regions of existence of two periodic orbits with periods n
and m one can find a region where a periodic orbit with period n+m exists. This occurs
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Figure 3.2: Border collision bifurcation curves in the parameter space c`×cr for the period
adding big bang bifurcation. The fixed points x∗` and x∗r are labeled in the regions where
they exist.
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(a) (b)

Figure 3.3: Bifurcation scenario found along the curve plot in Fig. 3.2 and parametrized
by the angle φ. (a) bifurcation diagram. (b) periods of the period orbits

ad-infinitum forming the so-called adding scenario.
In terms of the symbolic dynamics introduced in section 2.2, this addition of periods is

in fact a consequence of the concatenation of the symbolic sequences of periodic orbits.
That is, given two regions of existence in the parameter space c` × cr of two periodic
orbits with symbolic sequences Ψ and Φ, there exist a region in between where one finds
a periodic orbit with symbolic sequence ΨΦ (the concatenation). This forms the infinite
tree schemed in Fig. 3.4.

Moreover, the rotation number of these orbits form a Farey tree. It can be seen
([GIT84, Vee86, Vee87]) that given a periodic orbit with a certain symbolic sequence,
its rotation number is given by the number of times that the symbol R appears in the
sequence divided by the length of the sequence (the period of the periodic orbit). To show
an example, in Fig.3.5 we provide a blow up of the nested regions between the existence
regions where the periodic orbits with symbolic sequences LR and L2R exist.

Let us show that, if c`, cr > 0 are small enough, such a map is a map onto the interval
[−cr, c`].
For c` and cr positive and small enough, f` and fr are increasing functions when restricted
to [fr(0), 0] = [−cr, 0] and [0, f`(0)] = [0, c`], respectively. This guaranties that, in this
case, the minimum of f` and the maximum of fr in [−cr, c`] occur at x = −cr and x = c`,
respectively (see Fig. 3.6). As f` and fr are contractive near the origin, it comes that, if
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Figure 3.4: Infinite tree formed by the concatenation of symbolic sequences of periodic
orbits obtained in the adding structure.
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Figure 3.5: Symbolic sequences and the Farey tree formed by their rotation numbers in
the adding scheme for a quadratic map.
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c`, cr > 0 are small enough, then

−cr = fr(0) ≤ f`(−cr),
fr(c`) ≤ f`(0) = c`.

Identifying −cr ∼ c`, this allows us to think on the map f us a circle map,

f : Tc`,cr −→ Tc`,cr ,

wehre Tc`,cr is the circle given by Tc`,cr = R\[−cr, c`].

Let us now wonder about the invertibility of f . Using D.2 and D.3, it comes that, if
c`, cr > 0 are small enough,

|g`(−cr)| < cr

|gr(c`)| < c`.

Hence,

gr(c`)− g`(−cr) ≤ |gr(c`)|+ |g`(−cr)|
≤ cr + c`.

In other words, −cr + gr(c`) ≤ c` + g`(−cr), and hence

fr(c`) ≤ f`(−cr),

and f has the form shown in Figs. 3.6(a) and 3.6(b).
This, together with the monotonicity of the functions g` and gr near the origin, makes f
to be injective and thus invertible in f(Tc`,cr) if c`, cr > 0 are small enough.
Note that if c`, cr > 0 are large enough, the map f loses its invertibility when fr(c`) >
f`(−cr) (see Fig. 3.6(c)).

We then distinguish between the two possibilities shown in Figs. 3.6(a) and 3.6(b).
If

f`(−cr) = fr(c`),

(Fig. 3.6(a)) f is then an homeomorphism on the circle Tc`,cr .
On the other hand, if

f`(−cr) > fr(c`),

(see Fig. 3.6(b)) then f is discontinuous at x = −cr ∼ c`. However, it is an injective map
and thus invertible in f(Tc`,cr).



CHAPTER 3. PERIOD ADDING AND 2D MAPS 49

cℓ

cℓ

−cr

−cr

(a)

cℓ

cℓ

−cr

−cr

(b)

cℓ

cℓ

−cr

−cr

(c)

cℓ

cℓ

−cr

−cr

(d)

Figure 3.6: Different configurations for the circle map f . (a) continuous, (b) invertible
and (c) non-invertible. (d) inverse of (b)
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Let us consider
f−1 : Tc`,cr −→ Tc`,cr ,

given by

f−1 =

{
f−1
r (x) if − cr ≤ x ≤ fr(c`)

f−1
` (x) if f`(c`) ≤ x ≤ c`

and is schematically shown in Fig. 3.6(d).
Note that, if fr(c`) 6= f`(−cr) (fr(c`) < f`(−cr)), due to the discontinuity at x = c` ∼ −cr
the inverse map f−1 is not defined at [fr(c`), f`(−cr)] and it is therefore neither continuous.
However, we are interested on invariant objects (periodic orbits) of f , which are also
invariant for f 1, which, if they exist, they are located outside the interval [fr(c`), f`(−cr)].
Hence, we can argue as in [PTT87] and fill this interval with a constant the value c` (see
Fig. 3.6(d)). Thus, the map

f−1 =





f−1
r (x) if − cr ≤ x ≤ fr(c`)

c` if fr(c`) ≤ x ≤ f`(−cr)
f−1
` (x) if f`(c`) ≤ x ≤ c`

is a continuous circle map which captures the invariant objects of f , and hence their
(local) dynamics.

We now want to make use of results for circle maps obtained so far in the literature in
order to study the periodic orbits of f−1. To this end, we first obtain an equivalent map
defined in a set independent of the parameters c` and cr. We consider a diffeomorphism

φ(x; cr, c`) : Tc`,cr −→ T,

fulfilling φ(−cr; cr, c`) = 0 and φ(c`; cr, c`) = 1, and T = R\Z is the usual circle. This
diffeomorphism provides us a map f̂−1

f̂−1 : T −→ T

defined as

f̂−1 =





φ ◦ f−1
r ◦ φ−1(x) if 0 ≤ x ≤ φ(fr(c`))

1 if φ(fr(c`)) ≤ x ≤ φ(f`(−cr))
φ ◦ f−1

` ◦ φ−1(x) if φ(f`(−cr)) ≤ x ≤ 1,

which is continuous map onto T and topologically conjugated to f−1.
As are interested on the bifurcation scenario along a curve surrounding the origin of

the parameter space c` × cr for c`, cr > 0, we perform the reparamatrization

cr = ε sin Ω

c` = ε cos Ω,
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with ε > 0 and Ω ∈ (0, π
2
). For every ε > 0 we obtain hence a one-parameter family

of maps f̂−1(x; Ω). It is our goal now to show that, if ε > 0 is small enough, this map
undergoes the period-adding bifurcation scenario described above when Ω is varied. They
key step to see this is the following result, for which we do not provide a proof and hence
we conjeture. Its proof is left as future work.

Lemma 3.2.1. There exist a diffeomoerphism

h : T −→ T

and a monotonously increasing diffeomorphism

ϕ : (0, 1) ⊃ I −→
[
0, π

2

]

Ω′ 7−→ Ω

with φ(I) =
[
0, π

2

]
, such that

h ◦ f̂−1
(
h−1(x);ϕ(Ω′)

)
= Θ(x),

where

Θ(x) = x+ Ω′ +
1

2π
sin 2πx (3.2.3)

is the Arnol’d circle map. Moreover, the set of rotation numbers of the periodic orbits of
Θ(x) obtained when varying Ω ∈ I is [0, 1] ∩Q.

This result provides topological conjugacy between the Arnol’d circle map for all the
parameter values of Ω′ ∈ I for which Θ(x) exhibits complicated dyanmics. The rotation
number, which is defined as

ρ(Ω′) = lim
n→∞

Θn(x)− x
n

,

that one obtains when varying Ω′ ∈ I form the so-called devil’s staircase, as shown in
Fig. 3.7. This means that the rotation numbers take only rational values and the resulting
function, ρ(Ω′), is flat almost everywhere (for all values of Ω′ ∈ [0, 1] except in a Cantor
set). This implies that, for almost all Ω′ ∈ [0, 1], Θ(x) is mode-locked and hence only a
periodic orbit with rotation number ρ(Ω′) exists.
In terms of the Lemma 3.2.1, the set I = [a, b] is such that

a = sup(Ω′), ρ(Ω′) = 0

b = inf(Ω′), ρ(Ω′) = 1,

(see Fig. 3.7).
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Figure 3.7: Devil’s staircase: rotation numbers (ρ) of the periodic orbits obtained for
the Arnol’d circle map when varying the parameter Ω′ ∈ [0, 1]. The set I correspond to
the values of Ω′ for which the map f̂−1 is topological conjugated to the Arnol’d circle
map (3.2.3).

As the rotation number is invariant under topological conjugacy, the map f̂−1 (and
hence the original map f in (3.2.1)) possess periodic orbits whose rotation numbers form
a devil’s staircase when varying Ω = ϕ(Ω′) ∈

[
0, π

2

]
= ϕ(I).

As it is well known, the rotation numbers obtained along the devil’s staircase form
the Farey tree. It only remains then to show that the symbolic sequences of the periodic
orbits obtained when varying Ω form the adding structure. This can be done uniquely
relating the rotation numbers with symbolic sequences by using results reported in the
literature ([GIT84, GGT84, CGT84, GGT88]). This is left for future work.

3.3 Big bang bifurcations in 2-dimensional maps

In this section we propose an extension to two-dimensional maps of the results so far
presented for big bang bifurcations for one-dimensional maps. As in the previous section,
we give this in terms of a first approach or a guideline for future work to obtain and proof
results regarding big bang bifurcations for two-dimensional piecewise-defined maps.
For the case of the period incrementing big bang bifurcation, we also provide a partial
adaptation of some of the arguments given in Chapter 2. However, we only conjecture
sufficient conditions for the period adding case; a proof of them is totally left for future
work. As it will be shown in Chapter 4, this result, regarding the adding case, turns out



CHAPTER 3. PERIOD ADDING AND 2D MAPS 53

to be of practical interest, as it can be applied to predict and explain bifurcation scenarios
obtained in discretized sliding-mode control systems.

Let Σ be a curve splitting R2 in two connected components, X` and Xr. We then
adapt the general maps given in (2.3.1) and (3.2.1) undergoing a simultaneous collision
of fixed points to R2. Consider a piecewise-defined map

f : R2 −→ R2

of the form

f(z) :=

{
f`(z; c`), if z ∈ X`
fr(z; cr), if z ∈ Xr,

(3.3.1)

with z = (x, y).
Let us assume that, for |c`| and |cr| small enough, the maps f` and fr possess two isolated
attracting fixed points z∗` , z

∗
r , respectively, with real associated eigenvalues. Let us also

assume that they satisfy that

f`(z
∗
` ; c`) = z∗` ∈





X` if c` < 0

Σ if c` = 0

Xr if c` > 0

and

fr(z
∗
r ; cr) = z∗r ∈





Xr if cr < 0

Σ if cr = 0

X` if cr > 0

That is, for c` = cr = 0 both fixed points transversally cross the boundary Σ and f
simultaneously undergoes two border collision bifurcations. In other words, two border
collision bifurcation curves transversally cross each other in the two-dimensional param-
eter space c` × cr.
Note that we do not assume that f`(z

∗
` ; 0) = fr(z

∗
r ; 0) ∈ Σ and hence we do not require the

map to be continuous when both fixed points collide with the boundary, for c` = cr = 0.
Let us assume that there exist two open sets U`,Ur ⊂ R2 such that

f`(z
∗
` ; 0) = z∗` ∈ Σ ∩ (U` ∩ Ur) (3.3.2)

fr(z
∗
r ; 0) = z∗r ∈ Σ ∩ (U` ∩ Ur) (3.3.3)

f`(U` ∩ X`; 0) ⊂ X`. (3.3.4)

Then, the result that we conjecture states that

i) if fr(Ur ∩Xr; 0) ⊂ X` the origin of the parameter space c` × cr represents a big bang
bifurcation of the period incrementing type
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ii) if fr(Ur ∩Xr; 0) ⊂ Xr the origin of the parameter space c` × cr represents a big bang
bifurcation of the period adding type.

Note that, as we have required the eigenvalues associated with the attracting fixed
points z∗` and z∗r to be real for |c`| and |cr| small enough, both situations will basically
occur depending on the sign of the eigenvalues of the fixed points z∗r and the relative
position of their eigendirections with respect to Σ.

A precise study of i) is considered beyond the scope of this thesis and hence left for
future work. It is used, however, in Chapter 4 to predict the occurrence of a big bang
bifurcation in a second order sliding-mode control discretized system. There we also give
numerical evidence of this fact.

We now give some details on how the methodology presented in Chapter 2 could be
adapted to prove ii).

In order to argue that, for c`, cr > 0 small enough, only periodic orbits with symbolic
sequences of the form LnR exist, with arbitrarily large n, we start with some definitions.
Assuming c` > 0 small enough, let us consider the sequence

An := f−n` (Σ), n ≥ −1 (3.3.5)

with A0 = Σ. For simplicity we are assuming that f` is invertible in the whole curve Σ
if c` > 0 is small enough. If not, one should restrict f` to a proper domain containing
U` where the preimages of Σ by f` exist. One can always find such a domain if c` > 0 is
small enough because of the existence of the attracting fixed point.
Conditions stated in Eqs. (3.3.2) and (3.3.4) ensure us that the segments An exist for all
n > 0 if c` > 0 is small enough, and are located at X`. More over, by making c` > 0
small enough and choosing U` also small enough, the set U` ∩ X` is split in different sets
bounded by consecutive segments An. These sets are given by the intersection between
the sets

Ln =
{
z ∈ X` | f i`(z) ∈ X`, i < n, fn` (z) ∈ Xr

}
, (3.3.6)

and U`. These are characterized by the fact that they are mapped into Xr after exactly n
iterations and satisfy that Ln+1 = f−1

` (Ln). We also define the set

L0 = f`(L1) ⊂ Xr. (3.3.7)

Let us then consider the sequence of sets given by the inverses of Ln by the map fr,

Rn := f−1
r (Ln), n ≥ 0.

In Fig. 3.8 we show an example on how all these definitions look like for a map with
Σ = {x = 0}.
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Figure 3.8: L7R-periodic orbit (white points) for a two-dimensional piecewise-defined map
undergoing a period incrementing big bang bifurcation. Two (virtual) fixed points are
marked with crosses. As pointed lines their associated eigendirections. In thiner dashed
lines are also plot the trajectories by f` converging to the (virtual) fixed point z∗` ∈ Xr.
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Under the assumptions stated above, it comes that, for every n > 0 and every cr > 0
small enough there exist c` > 0, such

Rn ∩ L0 6= ∅.

In other words, for every n we can find c` and cr arbitrarily smalls such that

fr(L0) ∩ Ln 6= ∅.

This defines a partition of L0 in sets of the form Rn ∩L0, allowing us to construct a map

F : L0 −→ L0,

given by
F (x; c`, cr) = fn` ◦ fr(x; cr) if x ∈ Rn ∩ L0.

Due to the contractiveness of the maps f` and fr when c`, cr > are small enough, the map
F is also contracitve in L0.
At its return to L0, it may occur that the image of a set Rn ∩ L0 intersects Ri ∩ L0,

F (Rn ∩ L0) ∩ (Ri ∩ L0) 6= ∅.

In this case, due to the contractiveness of F , it comes that for every x ∈ Rn ∩ L0 there
exists j such that F j(x) /∈ Rn ∩ L0 and all points escape from Rn ∩ L0.
This can be observed in Fig. 3.8, where

F (R8 ∩ L0) = f 8
` (fr(R8 ∩ L0; c`), cr) ∩ (R7 ∩ L0) 6= ∅ (3.3.8)

and all points in R8 ∩ L0 are finally mapped into R7 ∩ L0 and escape from R8 ∩ L0.
Due to the contractiveness of F , this can not occur for all sets Ri ∩ L0 forming the

partition of L0, and hence there must exist some n such that

F (Rn ∩ L0) = fn` (fr(Rn ∩ L0; c`), cr) ⊂ Rn ∩ L0.

As the map fn` ◦ fr is smooth, this implies that this map must have fixed point. Thus,
there exists an attracting periodic orbit for the map f in (3.3.1), which has the symbolic
sequence LnR.
When continuously varying one of the parameters c` or cr, this periodic orbit undergoes
a border collision and

fn` (fr(Rn ∩ L0; cr), c`) ∩ (Ri ∩ L0) 6= ∅,

with i = n+1 or i = n−1. This gives rise to a period orbit of the form Ln+1R or Ln−1R,
respectively.
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It may also occur that there exist two sets Ri ∩ L0 and Rj ∩ L0 such that

F (Ri ∩ L0) = f i` (fr(Ri ∩ L0; cr); c`) ⊂ Ri ∩ L0

F (Rj ∩ L0) = f j` (fr(Rj ∩ L0; cr); c`) ⊂ R∩L0

leading to the coexistence of two periodic orbits with symbolic sequences LiR and LjR,
respectively. This is shown for exemple mentioned above in Fig. 3.9. As their domains of
attraction are split in L0 by preimages of Ak by fr, at most two of such periodic orbits
can coexist because there exists only one boundary, Σ, whose preimages by f` are Ak.
Moreover, if such sets exist, they have to be adjoin (see Fig. 3.9), and hence the coexisting
periodic orbits have symbolic sequences of the form LnR and Ln+1R. Otherwise, as the
map f is only defined with one boundary, Σ, the non-invariant sets located in between
should be expanded, which is not possible due to the contractiveness of F .

Further details and more precise and rigorous statement of the arguments provided
above are left for future work.

3.4 Conclusions

In this chapter we have proposed a detailed future work direction in order to extend the
result presented in Theorem 2.2.2 to the increasing-increasing case. Instead of explicit
calculations of the bifurcations curves, we propose to obtain a topological equivalent map
defined in the circle and to which one can apply well known classical theory. The value
of this approach remains on the relation of particular phenomena of piecewise-smooth
systems with well known results of theory of circle maps, hence avoiding the need of a
new theory.

In addition, we extend the results regarding big bang bifurcations to two-dimensional
piecewise-defined maps. For the case of the period incrementing we have been able to
adapt some of the arguments and techniques used for the one-dimensional case in Chap-
ter 2.
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Figure 3.9: Coexistence of a L7R and a L6R periodic orbits (white points) for a two-
dimensional piecewise-defined map undergoing a period incrementing big bang bifurcation.
Two (virtual) fixed points are marked with crosses. As pointed lines their associated
eigendirections. In thiner dashed lines are also plot the trajectories by f` converging to
the (virtual) fixed point z∗` ∈ Xr.



Chapter 4

Occurrence of big bang bifurcations
in discretized sliding-mode control
systems

4.1 Introduction

There exist many methods in order to force a system to exhibit a certain desired be-
haviour. If its output is required to be near a certain value, one common strategy consists
on implementing a control system such that two different actions are applied depending
on the sign of a certain switching function which depends on the actual state and its
derivatives. In general, this leads to a non-smooth system which, among other phenom-
ena can exhibit sliding.
As, in practice, the states are sampled at particular values of time, one considers a dis-
cretization of such a construction through a zero order holder, keeping the sampled value
constant until the next sampling. Instead of a differential equation, the system is then
usually modeled by a map, whose dynamics may differ completely from the time contin-
uous system where a “continuous sampling” of the states (infinite sampling frequency) is
assumed. This especially occurs when the states are close to the switching manifold, as
this map does not coincide with the stroboscopic Poincaré map of the time-continuous
system. In particular, new bifurcation phenomena may be introduced.
Because of the nowadays hegemony of digital implementations, this has become a relevant
topic in the control literature. In ([YC03, GY08, WYL08, Gal10, GY11]) the discretiza-
tion effects of a sliding mode controller in a planar system is studied. Specifically, the
discontinuous control results from the addition of the equivalent control plus a sign func-
tion, properly weighted. Then, a zero-order holder device is applied. As it is proven
in [GY11], the resulting dynamics show an infinite number of periodic orbits with arbi-
trarily large periods near a certain point in a two-dimensional space. Similar phenomena

59
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were also shown in [KST04] for one-dimensional systems derived from power converters.
Such points in parameter space assemble the so-called big bang bifurcations, first

introduced in [AS06b] when simulating a one-dimensional piecewise-linear system, better
understood and generalized later in [AGS11]. Unfortunately, the theory derived so far only
considers one-dimensional maps and, hence, it can’t be applied to the above mentioned
planar systems in sliding-mode control.

It is worth mentioning here that, when controllers are implemented through switches,
as in the case of power electronics, the resulting sliding-mode control actions reduce to
the discontinuous term; i.e. εsign(σ). Then, the digitized dynamics matches perfectly
with the maps that yield to big bang bifurcations. On the contrary, when the continuous
term (the equivalent control) is included, the derived map is not longer contractive, which
is highly required in the theoretical results obtained so far.

In this work, we use recent results for big bang bifurcations to explain the behaviour
of a class of digitized sliding mode controlled first order systems. Specifically, in terms
of [AS06b], a big bang bifurcation of the period adding type is shown to happen in
that systems when the on-off control is digitized. Moreover, big bang bifurcations are
shown to happen in on-off sliding mode controlled planar systems. Since the theory is
not complete in this case, sufficient conditions for such a bifurcation to occur in two-
dimensional piecewise maps are conjectured and corroborated by simulation.

4.2 A system with a relay based control

4.2.1 System description

+
−

ZOHGc(s) G(s)
T

k

−k

yyc u

Figure 4.1: A linear control system by a relay.

Let us consider a nth-order system given by its Laplace transform

Gs(s) =
b

U(s)
,

where U(s) is a polynomial of the form

U(s) = sn + an−1s
n−1 + · · ·+ a0, (4.2.1)
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which we assume to have only negative real roots.
Equivalently, one can also consider that the system is modeled by the differential equation

yn) + an−1y
n−1) + · · ·+ a0y = bu,

where yi) = diy/dti and u is the input of the system.
Let us suppose that we wish to control the system and make its output, y, close to a
certain desired value yc. Although there exist many ways to achieve this, we consider the
closed loop control scheme shown in Fig. 4.1.
On one hand, a certain control law is implemented by the block Gc(s), which is assumed
to be of the form

Gc(s) = 1 + c1s+ . . .+ cn−1s
n−1,

with cn−1 6= 0. This is to let the system have relative degree 1 and allow sliding motion
on σ (see below).
Its output is then sent to a relay of gain k, hence providing a sliding-mode control with
a sliding surface (also called switching surface) given by the controller Gc,

σ := y − yc + c1(y1) − y1)
c ) + . . .+ cn−1(yn−1) − yn−1)

c ) = 0. (4.2.2)

In this work we consider yc ∈ R constant, and thus y
i)
c = 0 for i ≥ 1.

Depending on the sign of the signal given by the controller Gc, the relay outputs the value
k or −k, which yield sliding motions on σ provided that the sign and the absolute value
of k are properly chosen.
Finally, the control output is digitized through a zero-order holder device, as in a real
implementation. This is represented in Fig. 4.1 by a switch that samples the output
of the relay at time-multiples of the sampling-period T and a zero order holder (ZOH),
which keeps the sampled value constant until the next sampling. Close to the sliding
surface (4.2.2), the dynamics of the discretized system differs from the time continuous
one, although they tend to be the same as T → 0. It is our goal to study the dynamics
of the discretized system.
After performing a proper change of variables to decrease the order of the system by
increasing its dimension, yi = yi), the closed loop dynamics can be written as

˙̄y = Aȳ + b̄u (4.2.3)

with ȳ = (y0, . . . , yn−1)T ∈ Rn and

A =




0 1 0 . . . 0
0 0 1 0
...

...
. . .

0 0 . . . 0 1 0
−a0 −a1 . . . −an−2 −an−1



, b̄ =




0
...
0
b


 .
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for t ∈ [iT, (i+ 1)T ), the input u is a constant equal to

u =

{
− k if σ(ȳ) < 0

k if σ(ȳ) > 0
(4.2.4)

where σ is the sliding surface given by the controller Gc(s) in Equation (4.2.2).
Sliding modes occur if the vector fields F± = Ax ± b k obtained by replacing u = ±k,
point both to the surface σ. Since F± are smooth everywhere, this can be checked through

(LF+σ) (LF−σ) < 0. (4.2.5)

Let us define ueq = − (∇σ)Aȳ
cn−1b

, then the previous inequality mets on the subset of σ defined
by

−|k| < ueq < |k| (4.2.6)

(see [Utk77] for details). In turn, this result can be read as for k properly selected (both
in sign and in absolute value), there is sliding motion on σ.

Equivalently, the dynamics of the system are given by the discrete model

ȳi+1 = P (ȳi),

where Pl (resp. Pr) is the piecewise defined stroboscopic map associated with F+, (resp.
F−) which is linear and can be explicitly integrated. We obtain

P (ȳ) =

{
Pl(ȳ) := ρ̄ȳ + µ̄` if σ(ȳ) < 0

Pr(ȳ) := ρ̄ȳ + µ̄r if σ(ȳ) > 0,
(4.2.7)

with
ρ̄ = eAT , µ̄r = k(ρ̄− Id)(A−1b̄), µ̄` = −k(ρ̄− Id)(A−1b̄).

4.2.2 General system dynamics

Each branch of the map (4.3.1), Pr and P`, has a fixed point

ȳ∗r = −(ρ̄− Id)−1µ̄r, ȳ∗` = −(ρ̄− Id)−1µ̄`, (4.2.8)

which may be feasible or virtual depending on whether it belongs to the domain of their
respective map or not.

Regarding the possible dynamics, we distinguish between three situations.
If both fixed points are feasible (σ(ȳ∗r) > 0 and σ(ȳ∗` ) < 0) they also become fixed points
of the map (4.3.1). Hence, if all eigenvalues of ρ̄ have modulus less than 1, both are
locally asymptotically stable. If only one of both fixed points is feasible (σ(ȳ∗r) < 0 and
σ(ȳ∗` ) < 0 or vice-versa) and the same condition for ρ̄ holds, then it becomes the unique
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fixed point of the map (4.3.1). For the same reason, all trajectories tend towards it, and
now its domain of attraction becomes Rn.
Note that, in these two previous cases, the control specification is not fulfilled as σ is not
flow invariant by the piecewise vector field F .

The third situation occurs when both fixed points are virtual (σ(ȳ∗r) < 0 and σ(ȳ∗` ) >
0). If all the eigenvalues of ρ̄ have modulus less than 1 and are real (hence positive) then
there are sliding motions in the original continuous-time system. In this case, and at least
for linear and planar systems, the dynamics of the digitized map consists on periodic
orbits which may possess arbitrarily large periods and whose iterates jump on both sides
of the sliding surface σ = 0. Properly tunning the parameters, the amplitude of all these
orbits can be chosen arbitrarily small. Additionally, the design conditions are satisfied in
this case, as the asymptotic dynamics are close to σ = 0. A precise description of all the
possible periodic orbits is the main scope of this work, and results from the existence of
a bing bang bifurcation. This is discussed in the next section for first and second order
systems.

4.3 Big bang bifurcation of the period adding type

4.3.1 The one-dimensional case

Let us first study the one-dimensional case (n = 1 and Gc(s) = 1) when (4.2.3) is a scalar
equation, which was reported in [FG11]. After applying the change of variable z = y− yc
to the original system, the sliding surface is given by z = 0, and the map (4.2.7) becomes

P̃ (z) =

{
P̃`(z) := ρz + µ` if z < 0

P̃r(z) := ρz + µr if z > 0
(4.3.1)

with

ρ = ea0T < 1, µr = (ρ− 1)(yc −
bk

a0

) ∈ R and µ` = (ρ− 1)(yc +
bk

a0

) ∈ R, (4.3.2)

and the fixed points

z∗r = − µr
ρ− 1

∈ R, z∗` = − µ`
ρ− 1

∈ R. (4.3.3)

In order to describe the dynamics of the map (4.3.1) when both fixed points of its
branches are virtual, µr < 0 and µ` > 0, we first focus on the bifurcations that occur in
their transition from virtual to feasible or vice versa. To this end, we first restrict ourselves
to a suitable two-dimensional parameter space, in terms of (4.3.3), where the position of
z∗r and z∗` with respect to the boundary z = 0 can be independently represented. More
precisely, we are interested on the existence of two curves such that a variation of the
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parameters along them, affects only the position of one fixed point. We proceed arguing
with the parameters ρ, µr and µ` in (4.3.1), although we will later translate our discussion
to the original parameters a, T , b, k and yc.
We remark that we benefit from the linearity of the system in order to perform explicit
calculations, although the same argumentations below hold also for a non-linear system.

As these transitions occur when one of the fixed points collides with the boundary
z = 0, these are given by border collision bifurcations. Although the parameter ρ influ-
ences on the position of both fixed points, as we are restricted to 0 < ρ < 1, its variation
does not lead to such type of bifurcations. Hence, we focus on the µ` × µr parameter
space.
There, the vertical and horizontal axis represent border collision bifurcation curves that
the fixed points, µ∗` and µ∗r, undergo. Of particular interest is the origin of this parameter
space, which is a co-dimension two bifurcation point, as both fixed points simultaneously
collide with the boundary. Depending on the sign of the eigenvalues associated with the
colliding fixed points, such a point may become a big bang bifurcation point, where an
infinite number of (border collision) bifurcation curves emanate from. If this occurs, these
bifurcation curves separate existence regions of periodic orbits located at the region in
the parameter space µ` × µr where both fixed points are virtual.
This basically depends on the sign of the eigenvalues of the colliding fixed points, which,
for the one-dimensional case, are the slopes of the map near the discontinuity. The
possible bifurcation scenarios for a one-dimensional contracting linear map with one dis-
continuity were described in [AS06b] through numerical observations, and were general-
ized in [AGS11] (see also the bibliography reported there). With independence of the
particular nature of the map, it was proven there that when the sign of the eigenval-
ues associated with the colliding fixed points are different (also known as increasing-
decreasing/decreasing-increasing case), then a big bang bifurcation of the period incre-
menting type occurs. It was also suggested that, when both are positive (increasing-
increasing case), a period adding big bang bifurcation (described below) occurs. Al-
though this result was conjectured, the resulting bifurcation scenario has been highly
reported in the literature ([Leo59, CGT84, GGT84, GGT88, GPTT86, GH94, Hom96,
TS86, PTT87]), and hence it is a well accepted result.

In our case, as the eigenvalues associated with the colliding fixed points are positive,
0 < ρ < 1, a big bang of the period adding type occurs at the origin of the parameter
space µ` × µr.
This implies that the region located near the origin of the parameter space where both
fixed points are virtual is fully covered by an infinite number of regions where a unique
periodic orbit exists. All these regions collapse at the origin and, hence, all the possible
periodic orbits exist for any arbitrarily small neighbourhood containing the origin of the
parameter space.
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To understand how these periodic orbits are organized, let us introduce the following
symbolic codification (see [AS06b] for a more extended explanation). Let (z1, . . . , zn)
be the sequence of points forming a periodic orbit of period n, then we consider the
symbolic sequence obtained by replacing each of these points by L if zi < 0 and R if
zi > 0. Then, the symbolic sequences of the periodic orbits are obtained by a gluing
process between periodic orbits. More precisely, in-between the regions of existence of
two periodic orbits of periods n and m with symbolic sequences α and β one finds a
region where the (n+m)-periodic orbit with symbolic sequence αβ (their concatenation)
exists. As the symbolic sequences are glued, the periods are added, and hence this sce-
nario was referred in [AS06b] as period adding. This process starts with the fixed points
z∗` → L and z∗r → R, which are “glued” to form the 2-periodic orbit LR, and is repeated
add infinitum. Thus, in any arbitrarily small neighbourhood of the origin of the param-
eter space one can find an infinite number of periodic orbits with arbitrarily large periods.

Let us adapt the situation described before in terms of he parameters involved in the
original system (4.2.3)-(4.2.4) for n = 1. Let us first focus on their influence on the
dynamics of the map (4.3.1).
As it comes from the relations shown in (4.3.2), the most relevant parameters regarding
the influence on the location of the fixed points z∗` and z∗r are yc, k and b. We proceed
arguing with the pair (yc, k), as they are the parameters to be tunned and, hence, are of
more interest from the control design point of view. However, the following discussion
can be easily extended to the pair (yc, b).
In this parameter space, the lines

k = −a0/byc and k = a0/byc (4.3.4)

represent border collision bifurcation curves for z∗` and z∗r , respectively. Hence, as both
are attracting with positive associated eigenvalues (0 < ρ < 1), a big bang bifurcation of
the period adding type occurs at the intersection of these lines, (yc, k) = (0, 0), where two
border collision bifurcation simultaneously occur.
Note that, although the parameter a0 also influences on the position of the fixed points,
it comes that a big bang bifurcation may occur for a0 = 0. However, for such a value the
fixed points are no longer attractive and, hence, the results obtained so far on big bang
bifurcation can not be applied.

To demonstrate this, we show in Fig. 4.2(a) the bifurcation scenario in the yc × k pa-
rameter space, where one can observe the infinite number of bifurcation curves emanating
from the origin. The adding scenario is presented in Fig. 4.2(b), where the periods of the
periodic orbits found along the curve marked in Fig. 4.2(a) are shown.
It comes from the adding procedure described above that all the periodic orbits step at
both sides of the boundary z = 0. Hence, each of these n-periodic orbits correspond in
the original 1-dimensional continuous model (4.2.3)-(4.2.4) to a continuous nT -periodic
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(a) (b)

Figure 4.2: (a) Big bang bifurcation in the (yc, k) parameter space for a0 = −2, b = 1 and
T = 0.1. The fixed points z∗i are labeled in the regions where they are feasible, and, as
dashed lines, the border collision bifurcation curves where they become virtual are shown.
The periods of the periodic orbits found along the pointed curve parametrized by σ are
shown in (b).

orbit which oscillates around y = yc. In addition, the amplitude of all these orbits tend
to zero as the parameters yc and k get close to the big bang bifurcation.

4.3.2 A second order system

We now extend the results shown in the previous section to a second order system.
In this case, we have

A =

(
0 1
−a0 −a1

)
, b̄ =

(
0
b

)
, σ = y1 − yc + c1y2,

where a0 and a1 are such that the eigenvalues of the matrix A have real negative eigen-
values.
For commodity, in order to easily proceed as before and argue with the relative position
of the fixed points z̄∗` and z̄∗r with respect the boundary, we introduce new coordinates
z̄ = (z1, z2) given by

z̄ =

(
1 c1

a0c1 − a1 1

)

︸ ︷︷ ︸
φ

−
(
yc
0

)
.
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Note that one can always perform such a change of variables as long as the vector (1, c1)T

is not an eigenvector of the matrix A.
In these new variables, the map (4.2.7) becomes

P̃ (z̄) =

{
P̃`(z̄) :=ρ̃z̄ + µ̄` if z1 < 0

P̃r(z̄) :=ρ̃z̄ + µ̄r z1 > 0,
(4.3.5)

where

ρ̃ = eÃT , Ã =

(
−a1 −1
a0 0

)

µ̄` = (ρ̃− Id)Ã−1

(
−φ
(

0
kb

)
+ Ã

(
yc
0

))

µ̄r = (ρ̃− Id)Ã−1

(
φ

(
0
kb

)
+ Ã

(
yc
0

))
.

The main advantage of this change of variables consists on the fact that the boundary
becomes z1 = 0, independently of the parameters, while the matrix ρ̃ remains only de-
pendent on the parameters ai. Hence, the relevant parameters for the study of the border
collision bifurcations only influence the position of the fixed points, which become

z̄∗` =

( −yc − kb
a0

− kb
a0

(a0c1 − a1)

)

z̄∗r =

( −yc + kb
a0

kb
a0

(a0c1 − a1)

)

The border collision bifurcation curves that the fixed points undergo become the same
expressions as in the one-dimensional case, given in (4.3.4). Hence, arguing again in the
yc × k parameter space, for yc = k = 0 both fixed points simultaneously collide with the
boundary z1 = 0 and become virtual.
We now conjecture an extension to 2-dimensional maps of the result used above for the
one-dimensional maps. In the considered situation regarding the simultaneously collision
of attracting fixed points with the boundary, there exist a big bang bifurcation of the
period adding type if there exist an open neighbourhood U such that, at the simultaneous
collision,

z̄∗` , z̄
∗
r ∈ U

P̃i(U ∩ Xi) ⊂ U ∩ Xi, i ∈ {`, r} ,

where X` and Xr are the left and right part of R2 separated by the boundary.
In our case, these conditions coincide with the sliding conditions given in (4.2.5). This
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Figure 4.3: Big bang bifurcation in the (yc, k) parameter space for a0 = −2, a1 = −5,
b = 1, c1 = 1.5 and T = 0.1.

is because, at the big bang bifurcation point, k = yc = 0, both fixed points collide with
origin of the state space, z̄∗i (0, 0)T . Hence, near the bifurcation point, |ueq| << 1 and thus
condition (4.2.6) is fulfilled if

c1 6= 0.

Note that, although the map (4.3.5) is continuous at z̄ = (0, 0)T at the big bang bifurcation
point because both fixed points coincide at z̄ = (0, 0)T , continuity is not assumed in the
conditions mentioned above.
The simulations shown in Fig. 4.3 show how a big bang bifurcation of the period adding
type occurs for yc = k = 0 if c1 6= 0.

4.4 Conclusions

In this chapter we have applied the results and methodology presented in Chapters 2
and 3 to an application example consisting of a general system controlled by relays in
sliding-mode operation. We have hence shown the existence of a co-dimension-2 big bang
bifurcation in a two-dimensional parameter space relevant from the control design point
of view.
When discretized, the original system becomes a piecewise-defined system with a single
boundary. The discretization is obtained through a stroboscopic map of flows with at-
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tracting critical points, which become critical points of the piecewise-defined maps with
positive associated eigenvalues. Hence, as suggested in Chapter 3, this big bang bifurca-
tion is of the period adding type.

In addition, we also consider a second order system which leads a two-dimensional
piecewise-defined for which the results conjectured in §3.3 hold, hence exhibiting also a
big bang bifurcation of the period adding type. We also provide numerical simulations in
order to confirm the predicted behaviour.

Although the first and second order systems that we have used as example were linear,
all the arguments that we have presented in this chapter can be applied to systems with
nonlinear transfer function under the same control-mode.
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Chapter 5

The Melnikov method and
subharmonic orbits in a
piecewise-smooth system

5.1 Introduction

As explained in the introduction of this thesis, this chapter is devoted to extend classical
Melnikov methods to a class of piecewise-smooth “Hamiltonian” systems. It is organized
as follows.
In §5.2 we describe the class of system that we consider and introduce some notation and
tools needed for this work. In §5.3, we prove the existence of periodic orbits distinguishing
between the conservative and dissipative cases. §5.4 is devoted to heteroclinic connections.
Finally, in §5.5, we use the example of the rocking block to illustrate the results obtained
regarding the periodic orbits, and compare with the work of [Hog89].

5.2 System description

5.2.1 General system definition

We divide the plane into two sets (see Figs. 5.1-5.2),

S+ =
{

(x, y) ∈ R2 |x > 0
}

S− =
{

(x, y) ∈ R2 |x < 0
}

separated by the switching manifold

Σ = Σ+ ∪ Σ− ∪ (0, 0) (5.2.1)

73
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where

Σ+ =
{

(x, y) ∈ R2 |x = 0, y > 0
}

Σ− =
{

(x, y) ∈ R2 |x = 0, y < 0
}
.

We consider the piecewise-smooth system

(
ẋ
ẏ

)
=

{
X+

0 (x, y) + εX+
1 (x, y, t) if (x, y) ∈ S+

X−0 (x, y) + εX−1 (x, y, t) if (x, y) ∈ S− (5.2.2)

We assume X±0 ∈ C∞(R2) and X±1 (x, y, t) ∈ C∞(R3), although this can be relaxed to less
regularity in S± and S± × R, respectively.
System (5.2.2) is a Hamiltonian system associated with a C0 piecewise-smooth Hamilto-
nian of the form

Hε(x, y, t) = H0(x, y) + εH1(x, y, t). (5.2.3)

The unperturbed C0(R2) Hamiltonian H0 is a classical Hamiltonian given by

H0(x, y) :=
y2

2
+ V (x) :=





H+
0 (x, y) :=

y2

2
+ V +(x) if (x, y) ∈ S+ ∪ Σ

H−0 (x, y) :=
y2

2
+ V −(x) if (x, y) ∈ S−

(5.2.4)

with V ± ∈ C∞(R) satisfying V +(0) = V −(0).
Similarly, the non-autonomous T -periodic C0(R3) perturbation, εH1, is given by

H1(x, y, t) :=

{
H+

1 (x, y, t) if (x, y) ∈ S+ ∪ Σ+

H−1 (x, y, t) if (x, y) ∈ S− ∪ Σ−

satisfying H+
1 (0, y, t) = H−1 (0, y, t) ∀(y, t) ∈ R2.

Then, the relation between (5.2.2) and (5.2.3) is given by

X+
0 + εX+

1 = J∇(H+
0 + εH+

1 )

X−0 + εX−1 = J∇(H−0 + εH−1 ),
(5.2.5)

where J is the usual symplectic matrix

J =

(
0 1
−1 0

)
.

We assume that the phase portrait of the unperturbed system (5.2.2) (ε = 0) is topo-
logically equivalent to the one shown in Fig. 5.1, which we make precise in the following
hypotheses.
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C.1 There exist two hyperbolic critical points z+ ≡ (x+, y+) ∈ S+ and z− ≡ (x−, y−) ∈
S− of saddle type belonging to the energy level

{
(x, y) |H0(x, y) = c1 > 0

}
. (5.2.6)

C.2 The form of the Hamiltonian H0 in Eq. (5.2.4), ensures that X±0 are both tangent to
Σ at (0, 0) ∈ Σ. We require that V ± satisfy

(V +)′(0) > 0; (V −)′(0) < 0,

and so (0, 0) is an invisible quadratic tangency for both vector fields. Following [GST11],
we call the point (0, 0) an invisible fold-fold.

C.3 There exist two heteroclinic orbits given by W u(z−) = W s(z+) and
W u(z+) = W s(z−) surrounding the origin and contained in the energy level (5.2.6).

C.4 The region between both heteroclinic orbits is fully covered by periodic orbits sur-
rounding the origin given by

Λc =
{

(x, y) ∈ R2 |H0(x, y) = c
}

(5.2.7)

with 0 < c < c1, and Λc intersects Σ transversally exactly twice.

C.5 The period of Λc is a regular function of c with strictly positive derivative for 0 <
c < c1.

Note that, as the unperturbed Hamiltonian H0 is C∞ in S+ and S−, the fact that the
heteroclinic orbits are in the energy level H0(x, y) = c1 follows automatically from hy-
pothesis C.1. However, we include it explicitly for clarity.

We wish to determine which of these objects and characteristics persist and which
are destroyed when the small non-autonomous T -periodic perturbation εH1 is considered.
The splitting of the separatrices and the persistence of periodic orbits is of interest. In the
smooth case, these answers are given completely by the classical Melnikov method [GH83].
Hence, it is natural to check whether these classical tools are still valid for the piecewise-
smooth system presented above and if any changes to the method are necessary.
Another interesting question that can be addressed with a similar approach is the existence
of 2-dimensional invariant tori of system (5.2.2) (see [KKY97, Kun00]).
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x− x+

y

x

ΛcWu(x−) = Ws(x+)

Ws(x−) = Wu(x+)

S+S−

Σ+

Σ−

Figure 5.1: Phase portrait for the unperturbed system (5.2.2).
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5.2.2 Poincaré impact map

To study system (5.2.2) we will proceed as in [Hog89] using the Poincaré impact map. We
consider the extended phase space R2×R adding time as a system variable and equation
ṫ = 1 to Eq. (5.2.2). As the perturbation is periodic, this time variable is usually defined
in T = R/T ; however, it will be more useful for us to consider R instead. We want to
study the motion in the region surrounded by the heteroclinic orbit, so we consider in
this extended phase-space the Poincaré section

Σ̃+ =
{

(0, y, t) ∈ R2 × R | 0 < y <
√

2c1

}
. (5.2.8)

To simplify the notation, as the first coordinate in Σ̃+ is always 0, we will omit its repe-
tition whenever this does not lead to confusion. The domain of the Poincaré map is not
Σ̃+ but a suitable open set U , that depends on ε and, for ε = 0, does not contain the
heteroclinic connection.

We now define the Poincaré impact map

Pε : U ⊂ Σ̃+ −→ Σ̃+,

as follows (see Fig. 5.2). First, using the section

Σ̃− =
{

(0, y, t) ∈ R2 × R | −
√

2c1 < y < 0
}
, (5.2.9)

with (0, y0, t0) ∈ U+ ⊂ Σ̃+, we define the map

P+
ε : U+ ⊂ Σ̃+ −→ Σ̃−,

as

P+
ε (y0, t0) =

(
Πy

(
φ+ (t1; t0, 0, y0, ε)

)
, t1
)

(5.2.10)

where φ+(t; t0, x, y, ε) is the flow associated with system (5.2.2) restricted to S+, and
t1 > t0 is the smallest value of t satisfying the condition

Πx

(
φ+
(
t1; t0, 0, y0, ε

))
= 0. (5.2.11)

where Πx, Πy are projections onto the x and y axes, respectively.
Similarly, we consider

P−ε : U− ⊂ Σ̃− −→ Σ̃+

for (0, y1, t1) ∈ U− ⊂ Σ̃− defined by

P−ε (y1, t1) =
(
Πy

(
φ− (t2; t1, 0, y1, ε)

)
, t2
)

(5.2.12)
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P+
ε (y0, t0)
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φ+φ−

Σ+
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S− S+

Figure 5.2: Poincaré impact map (5.2.14) represented schematically.

where φ−(t; t1, x, y, ε) is the flow associated with (5.2.2) restricted to S−, and t2 > t1 is
the smallest value of t satisfying the condition

Πx

(
φ−
(
t2; t1, 0, y1, ε

))
= 0. (5.2.13)

Then the Poincaré impact map is defined as the composition

Pε : U ⊂ Σ̃+ −→ Σ̃+

(y0, t0) 7−→ P−
ε ◦P+

ε (y0, t0)
(5.2.14)

Notice that, as assumed in C.4, for the unperturbed flow all initial conditions in Σ+ lead
to periodic orbits surrounding the origin. Hence, we can give a closed expression for P0,
the Poincaré impact map when ε = 0. Let

α±(±y) = ±2

(V ±)−1(h)∫

0

1√
2(h− V ±(x))

dx, h = H0(0,±y) =
y2

2
(5.2.15)

be the time needed by an orbit of the unperturbed system with initial condition (0,±y) ∈
Σ± to reach Σ∓. In the unperturbed case, the orbit with initial condition (0, y) ∈ Σ+ has
period

α(y) = α+(y) + α−(−y). (5.2.16)
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Then the Poincaré impact map when ε = 0 is defined in the whole Σ̃+, and can be written
as

P0(y0, t0) = (y0, t0 + α(y0)). (5.2.17)

Thus, if ε is small enough, the perturbed trajectories starting at Σ̃+ cross Σ̃+ again. The
Poincaré impact map is well defined, and is as smooth as the flow restricted to S+ and
S−.
Note that in the symmetric case, V +(x) = V −(−x), α+(y) = α−(−y) is half the period
of the unperturbed periodic orbit with initial condition (0, y) ∈ Σ+.

5.2.3 Coefficient of restitution

As the name of the previous map suggests, it is typically used to deal with systems with
impacts, as is the case of the mechanical example of section 5.5. In order to include the loss
of energy at the impact, one considers a coefficient of restitution, r ∈ (0, 1], that reduces
the velocity, y, at every impact. More precisely, if a trajectory crosses Σ transversally at
some point (0, yB) at t = tB, then the state is replaced by (0, ryB) at a later time tA to
proceed with the evolution of the system. In other words, the system slides along Σ from
(0, yB) to (0, ryB) during time tA − tB and

y(tA) = ry(tB). (5.2.18)

For the rest of this article we will assume that the loss of energy is produced instanta-
neously and hence tA = tB. Thus, there is no sliding along Σ and the trajectory jumps
from (0, yB) to (0, ryB).

Clearly, when such a condition is introduced to a system of the type (5.2.2), the
unperturbed system (ε = 0) is no longer conservative, the origin becomes a global attractor
and none of the conditions C.1–C.5 hold. In particular, the orbits with initial conditions
on the unstable manifolds W u(z−) and W u(z+) tend to the origin and can not intersect
the stable manifolds W s(z+) and W s(z−), respectively (see Fig. 5.3).

Although periodic orbits surrounding the origin are not possible for the unperturbed
case if r < 1, they may exist if ε > 0. However, roughly speaking, as these orbits will
have to overcome the loss of energy, the magnitude of the forcing can not be arbitrarily
small. We will make a precise statement of this fact in §5.3.2 (see also [Hog89]).

To study the existence of periodic orbits we will use again the impact map, which can
also be defined for r < 1 as (see Fig. 5.4)

P̃ε,r(y0, t0) := Rr ◦ P−ε ◦Rr ◦ P+
ε (y0, t0) (5.2.19)

where
Rr(y0, t0) = (ry0, t0).
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z− z+

y

x

Wu(z−)

Wu(z+)

Ws(z+)

Ws(z−)

Σ+

Σ−

S− S+

Figure 5.3: Stable and unstable manifolds of system (5.2.2) for r < 1 and ε = 0.
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y

x

Rr

Rr

(y0, t0)

P+
ε

P−
ε

P̃ε,r(y0, t0)

Σ+

Σ−

S− S+

Figure 5.4: Impact map for r < 1 and ε > 0.

Note that P̃ε,r is as smooth as the flow restricted to S±, since it is the composition of
smooth maps.

Using Eqs. (5.2.15) and (5.2.16), the impact map, P̃ε,r, for ε = 0 and r < 1 can be
written as

P̃0,r(y0, t0) =
(
r2y0, t0 + α+ (y0) + α−(−ry0)

)
. (5.2.20)

Note that, for any ε > 0,

P̃ε,1(y0, t0) = Pε(y0, t0).

5.2.4 Some formal definitions and notation

Up to now, we have considered separately the solutions of system (5.2.2) in S+ and
S−until they reach the switching manifold Σ. Given an initial condition (x0, y0, t0), one
can extend the definition of a solution, φ(t; t0, x0, y0, ε, r), of system (5.2.2),(5.2.18) for
all t ≥ t0 by properly concatenating φ+ or φ− whenever the flow crosses Σ transversally.
Depending on the sign of x0, one applies either φ+(t; t0, x0, y0, ε) or φ−(t; t0, x0, y0, ε) until
the trajectory reaches Σ, and then one applies (5.2.18). If x0 = 0, one proceeds similarly
depending on the sign of y0. This is because ẋ = y + O(ε) is always an equation of the
flow and the orbits twist clockwise.

In this work, we will mainly use solutions with initial conditions (0, y0, t0) ∈ Σ̃+. In
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z−ε

z+ε

y

x

(y0, t0)=(y0ε,r, t
0
ε,r)

(y1ε,r, t
1
ε,r)

(y2ε,r, t
2
ε,r)

(y3ε,r, t
3
ε,r)

Σ+

Σ−

S− S+

Figure 5.5: Sequence of impacts for r < 1 and ε > 0.

that case, we define the sequence of impacts (0, yiε,r, t
i
ε,r) (see Fig. 5.5), if they exist, as

(yiε,r, t
i
ε,r) =

{
Rr ◦ P−ε (yi−1

ε,r , t
i−1
ε,r ) if yi−1

ε,r < 0
Rr ◦ P+

ε (yi−1
ε,r , t

i−1
ε,r ) if yi−1

ε,r > 0
, (5.2.21)

with (y0
ε,r, t

0
ε,r) = (y0, t0) and P±ε defined in (5.2.10) and (5.2.12). Notice that the sequence

(5.2.21) will be finite if the flow reaches Σ a finite number of times only.
For the unperturbed case, for any point (0, y0, t0) ∈ Σ̃+, the sequence (5.2.21) becomes

(yi0,r, t
i
0,r) :=

{ (
riy0, t

i−1
0,r + α− (−ri−1y0)

)
if i ≥ 2 even(

−riy0, t
i−1
0,r + α+ (ri−1y0)

)
if i ≥ 1 odd

, (5.2.22)

where α± are defined in Eq. (5.2.15).
Once the impacts (yiε,r, t

i
ε,r) are defined, the solution of the non-autonomous

system (5.2.2),(5.2.18) with initial condition (0, y0, t0) ∈ Σ̃+ is given by

φ(t; t0, 0, y0, ε, r) :=





φ+(t; t2iε,r, 0, y
2i
ε,r, ε) if t2iε,r ≤ t < t2i+1

ε,r

φ−(t; t2i+1
ε,r , 0, y2i+1

ε,r , ε) if t2i+1
ε,r ≤ t < t2i+2

ε,r

, i ≥ 0. (5.2.23)

Note that in the case when the number of impacts is finite, we take the last interval of
time to be infinitely long.
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In the rest of the chapter we will generally distinguish between the conservative (r = 1)
and dissipative (r < 1) cases. We will omit the parameter r in the flow φ whenever we
refer to r = 1.
Note that we have only defined the solution of the system for an initial condition (0, y0, t0) ∈
Σ̃+. Given (0, y0, t0) ∈ Σ̃−, one defines similarly this solution by just properly shifting the
subscripts of tiε in (5.2.23). In addition, it is possible to extend precisely this definition to
an arbitrarily initial condition (x0, y0, t0).

As is usual when dealing with Hamiltonian systems, we will use the unperturbed
Hamiltonian to measure the distance between states. In addition, as we are dealing with
a perturbation problem, we will frequently use expansions in powers of ε. In this case,
the integral of the Poisson brackets of the Hamiltonians H1 and H0 typically provides a
compact expression for the linear terms in ε. Given m ≥ 1, (0, y0, t0) ∈ Σ̃+ and its impact
sequence (0, yiε,r, t

i
ε,r), 0 ≤ i ≤ 2m, for the piecewise-smooth system (5.2.2),(5.2.18) when

r ≤ 1, we introduce

∫ t2mε,r

t0

{H0, H1} (φ (t; t0, 0, y0, ε, r) , t) dt

:=
m−1∑

i=0

(∫ t2i+1
ε,r

t2iε,r

{
H+

0 , H
+
1

} (
φ+(t; t2iε,r, 0, y

2i
ε,r, ε), t

)
dt

+

∫ t2i+2
ε,r

t2i+1
ε,r

{
H−0 , H

−
1

} (
φ−(t; t2i+1

ε,r , 0, y2i+1
ε,r , ε), t

)
dt

)
(5.2.24)

where {Q (x, y) , R (x, y)} = ∂Q
∂x

∂R
∂y
− ∂Q

∂y
∂R
∂x

is the canonical Poisson bracket of the Hamil-
tonians Q and R.

The next Lemma provides an expression for H0

(
φ
(
t2mε,r ; t0, 0, y0, ε, r

))
, which we will

use below.

Lemma 5.2.1. Let m ≥ 1 and (0, y0, t0) ∈ Σ̃+, and let (0, yiε,r, t
i
ε,r), i = 0, . . . , 2m, be its

associated impact sequence as defined in (5.2.21). Then,

H0(0, y2m
ε,r )−H0 (0, y0) = r2

[
ε

∫ t2mε,r

t0

{H0, H1} (φ (t; t0, 0, y0, ε, r) , t) dt

+
2m−1∑

i=0

(
H0

(
0, yiε,r

)
−H0

(
0,
yiε,r
r

))]
.

(5.2.25)

Proof. The proof of this Lemma comes from a straightforward application of the funda-
mental theorem of calculus to the smooth functions H±0 (φ± (t; t0, 0,±y0, ε)), using the
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fact that

H0(0, y2m
ε,r ) = H0

(
rφ
(
t2mε,r ; t0, 0, y0, ε, r

))

= r2H0

(
φ
(
t2mε,r ; t0, 0, y0, ε, r

))
,

taking into account the intermediate gaps induced by the impact condition (5.2.18) and
that

d

dt
H±0

(
φ± (t; t∗, x∗, y∗, ε)

)
= ε

{
H±0 , H

±
1

} (
φ± (t; t∗, x∗, y∗, ε)

)

for any (x∗, y∗) ∈ S± ∪ Σ± and t ≥ t∗ such that φ± (t; t∗, x∗, y∗, ε) ∈ S±.

The following Lemma gives us an expression for the expansion in powers of ε of
H0(0, y2m

ε,r )−H0 (0, y0), which we will use in §5.3.

Lemma 5.2.2. Let m ≥ 1 and (0, y0, t0) ∈ Σ̃+, and let (0, yiε,r, t
i
ε,r), i = 0, . . . , 2m, be its

associated impact sequence as defined in (5.2.21). Then, if ε ' 0, the Taylor expansion
of expression (5.2.25) becomes

H0(0, y2m
ε,r )−H0 (0, y0) =

y2
0

2
(r4m − 1) + εGm(y0, t0)

+O(ε2) +O(ε (r − 1))
(5.2.26)

where

Gm(y0, t0) =

∫ mα(y0)

0

{H0, H1} (φ (t; 0, 0, y0, 0) , t+ t0) dt (5.2.27)

and α(y0) is given in (5.2.16).

Proof. The zero order term in ε of the expansion is found by noting that, if ε = 0, from

expression (5.2.22), one has H0(0, yi0,r) = H0(0,
yi+1
0,r

r
). Hence all the terms in the sum of

Eq. (5.2.25) cancel each other except for the first and the last one. This, in combination

with the fact that H0(0, y) = y2

2
, gives the first term in Eq. (5.2.26). For the linear term

in ε, one first obtains

r2

[∫ t2mε,r

t0

{H0, H1} (φ (t; t0, 0, y0, 0, r) , t) dt

+ (r2 − 1)
2m−1∑

i=1

(
d

dε

(
H0

((
yiε,r, t

i
ε,r

)))
|ε=0

)]
.

Then, by applying Eq. (5.2.20) m times, one has that t2mε,1 = t0 + mα(y0) + O(ε). Thus,
by expanding this for r near 1 and ε near 0 and noting that the unperturbed flow is
autonomous and hence φ(t; t0, 0, y0, 0) = φ(t− t0; 0, 0, y0, 0), one gets expression (5.2.27).
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Remark 5.2.1. If in Eq. (5.2.27) we take α(y0) = nT
m

, then we recover the classical
Melnikov function for the subharmonic orbits [GH83] with the modified integral (5.2.24).

5.3 Existence of subharmonic orbits

5.3.1 Conservative case, r = 1: Melnikov method for subhar-
monic orbits

Let us consider system (5.2.2) neglecting the loss of energy at impact (r = 1 in Eq. (5.2.18)).
According to C.1–C.5, for ε = 0, this system possesses a continuum of periodic orbits, Λc

in Eq. (5.2.7), surrounding the origin. Our main goal in this section is to investigate the
persistence of these orbits when the (periodic) non-autonomous perturbation is considered
(ε > 0). The classical Melnikov method for subharmonic orbits, which here, in principle,
does not apply, provides sufficient conditions for the persistence of periodic orbits for a
smooth system with an equivalent, smooth, unperturbed phase portrait.

The period of the orbits Λc tends to infinity as they approach the heteroclinic orbit.
More precisely, if qc(t) is the periodic orbit satisfying qc(0) = (0, y0) with H0(0, y0) = c,
its period α(y0) tends to infinity as c→ c1 (see formula (5.2.16)). As we are interested in
finding periodic orbits for 0 < ε � 1, we will use the unperturbed periodic solutions as
ε-close approximations to them. In general, such perturbation results are valid only for
finite time and therefore, from now on, we will restrict ourselves to a set of the form

Σ̃+
c̃ =

{
(0, y, t) ∈ Σ̃+ | 0 ≤ y ≤ c̃

}
, (5.3.1)

for a fixed c̃ satisfying 0 ≤ c̃ <
√

2c1. Note that, if (0, y0, t0) ∈ Σ̃+
c̃ then α(y0) is uniformly

bounded (α(y0) < α(c̃)). However, following [GH83], it is also possible to extend the
method for all the periodic orbits up to the heteroclinic connection.

To look for periodic orbits we will use the impact map defined in (5.2.14). In terms of
this map, a point in U ⊂ Σ̃+ will lead to a periodic orbit of period nT if it is a solution
of the equation

Pm
ε (y0, t0) = (y0, t0 + nT ), (5.3.2)

for some m. We take m to be the smallest integer such that (5.3.2) is satisfied. In that
case, φ (t; t0, 0, y0, ε) will be a periodic orbit of period nT , which crosses the switching
manifold Σ exactly 2m times. We will call this an (n,m)-periodic orbit. Then for (n,m)-
periodic orbits with ε > 0 we have the following result analogous to the smooth case

Theorem 5.3.1. Consider a system as defined in (5.2.2) satisfying C.1–C.5, and let
α(y0) be the function defined in (5.2.15)-(5.2.16). Assume that the point (0, ȳ0, t̄0) ∈ Σ̃+

c̃

satisfies
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H.1 α(ȳ0) = n
m
T , with n,m ∈ Z relatively prime

H.2 t̄0 ∈ [0, T ] is a simple zero of

Mn,m(t0) =

∫ nT

0

{H0, H1} (qc(t), t+ t0)dt, c = H0(0, ȳ0), (5.3.3)

where qc(t) = φ (t; 0, 0, ȳ0) is the periodic orbit such that α(ȳ0) = nT
m

.
Then, there exists ε0 such that, for every 0 < ε < ε0, one can find y∗0 and t∗0 such that
φ(t; t∗0, 0, y

∗
0, ε) is an (n,m)-periodic orbit.

Proof. The proof of the result comes from a straightforward application of the implicit
function theorem to equation (5.3.2). Let us fix n and m relatively prime. We replace
equation (5.3.2) by

(
H0 (0,Πy0(P

m
ε (y0, t0)))

Πt0 (Pm
ε (y0, t0))

)
−
(
H0(0, y0)
t0 + nT

)
=

(
0
0

)
. (5.3.4)

That is, we use the Hamiltonian H0 to measure the distance between the points
(0,Πy0 (Pm

ε (y0, t0))) and (0, y0).
Using the second equation in (5.3.4) we have

Πy0 (Pm
ε (y0, t0)) = Πy (φ(t0 + nT ; t0, 0, y0, ε))

0 = Πx (φ (t0 + nT ; t0, 0, y0, ε)) .

This allows us to rewrite Eq. (5.3.4) as
(
H0(φ(t0 + nT ; t0, 0, y0, ε))−H0(0, y0)

Πt0 (Pm
ε (y0, t0))− nT − t0

)
=

(
0
0

)
. (5.3.5)

We expand Eq. (5.3.5) in powers of ε. Using Eq. (5.2.17), the second component of (5.3.5)
becomes

Πt0 (Pm
ε (y0, t0))− t0 − nT = mα(y0)− nT +O(ε) = 0, (5.3.6)

where α(y0) is the period of the periodic orbit qc(t), c = H0(0, y0), given in Eq. (5.2.16).
On the other hand, using Lemma 5.2.2 and noting that

Πy0 (Pm
ε (y0, t0)) = y2m

ε,1 ,

the first equation in (5.3.5) can be written as

H0(0,Πy0(P
m
ε (y0, t0)))−H0(0, y0)

= ε

∫ mα(y0)

0

{H0, H1} (φ(t; 0, 0, y0, 0), t+ t0)dt+O(ε2)

= εGm(y0, t0) +O(ε2).
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where Gm(y0, t0) is given in (5.2.27). Hence, Eq. (5.3.5) finally becomes

Fn,m(y0, t0, ε) :=

(
Gm(y0, t0) +O(ε)

mα(y0)− nT +O(ε)

)
=

(
0
0

)
, (5.3.7)

where the order in ε of the first component has been reduced and, thus, the implicit
function theorem can be applied to Eq. (5.3.7). Therefore, one needs

S.1 Fn,m(ȳ0, t̄0, 0) = (0, 0)T

S.2 det(Dy0,t0F (ȳ0, t̄0, 0)) 6= 0, where Dy0,t0 ≡ D is the Jacobian with respect to the
variables y0 and t0.

The first condition is satisfied by noting in Eq. (5.3.7) that ȳ0 has to be such that α(ȳ0) =
nT
m

and t̄0 a zero of the subharmonic Melnikov function

Mn,m(t0) := Gm(ȳ0, t0) =

∫ nT

0

{H0, H1} (qc(t), t+ t0)dt,

where qc(t), c = H0(0, ȳ0), is the unperturbed periodic orbit of period nT
m

such that
qc(0) = (0, y0), and therefore qc(t) = φ (t; 0, 0, ȳ0, 0).
In addition, for ε = 0, DFn,m is given by

DFn,m(y0, t0, 0) =

(
∂Gm

∂y0
∂Gm

∂t0

mα′(y0) 0

)
.

By C.5, α′(y0) 6= 0, and the second condition is satisfied if t̄0 is a simple zero of the
subharmonic Melnikov function, Mn,m(t0), which completes hypothesis H.2.
Finally, applying the implicit function theorem to (5.3.7) at (y0, t0, ε) = (ȳ0, t̄0, 0), there
exists ε0 > 0 such that, if 0 < ε < ε0, then there exist unique y∗0(ε) and t∗0(ε) solutions of
the equation (5.3.4), which have the form

y∗0 = ȳ0 +O(ε)

t∗0 = t̄0 +O(ε).

Hence, the orbit φ (t; t∗0, 0, y
∗
0, ε) is an (n,m)-periodic orbit, as it has period nT and impacts

2m times with the switching manifold Σ in every period.

Remark 5.3.1. The upper bound ε0 given in the theorem depends on n and m. However,
for every fixed m, it is possible to obtain ε0(m), such that for ε < ε0(m), we can apply
the theorem for all n such that α−1(nT

m
) ∈ Σ̃+

c̃ . This is because the approximation of the
perturbed flow by the unperturbed periodic orbit is performed m times beyond the period
of the unperturbed periodic orbit.
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Remark 5.3.2. The proof of the result provides us with a constructive method to find the
initial condition for nT -periodic orbits for ε > 0.

S.1 Given n and m, find ȳ0 such that α(ȳ0) = n
m
T using Eq. (5.2.16).

S.2 Find t̄0 such that Mn,m(t0) has a simple zero at t0 = t̄0.

S.3 Use (ȳ0, t̄0) as seed to solve Eq. (5.3.4) numerically.

Lemma 5.3.1. The subharmonic Melnikov function (5.3.3) is either identically zero or
generically possesses at least one simple zero.

Proof. The proof comes from the fact that Mn,m(t0) has average

< Mn,m(t0) >=
1

T

∫ T

0

Mn,m(t0)dt0

equal to zero.

< Mn,m(t0) > =
1

T

∫ T

0

∫ nT

0

{H0, H1} (qc(t), t+ t0) dtdt0

=
1

T

∫ nT

0

∫ T

0

{H0, H1} (qc(t), t+ t0) dt0dt

=

∫ nT

0

{H0, < H1 >} (qc(t))dt.

Recalling that α(y0) = nT
m

(see (5.2.15)-(5.2.16)) and letting

q+
c (t) = φ+(t; 0, 0, y0, 0)

q−c (t) = φ−(t;α+(y0), 0,−y0, 0),

< Mn,m(t0) > can be written as

m

(∫ α+(y0)

0

{
H+

0 , < H+
1 >

} (
q+
c (t)

)
dt+

∫ nT
m

α+(y0)

{
H−0 , < H−1 >

} (
q−c (t)

)
dt

)

= −m
(∫ α+(y0)

0

d

dt

(
< H+

1 >
(
q+
c (t)

))
dt+

∫ nT
m

α+(y0)

d

dt

(
< H−1 >

(
q−c (t)

))
dt

)

= −m
(
< H+

1 >
(
q+
c (α+(y0))

)
− < H+

1 >
(
q+
c (0)

)

+ < H−1 >
(
q−c (nT

m
)
)
− < H−1 >

(
q−c
(
α+(y0)

))
)

= 0.

Note that, if Mn,m(t0) ≡ 0 then a second order analysis is required to study the
existence of periodic orbits.
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5.3.2 Dissipative case, r < 1

We now focus on the situation when the coefficient of restitution r introduced in §5.2.3
is considered. As already mentioned, for ε = 0 the origin is a global attractor and hence
none of the periodic orbits studied in the previous section exists if the amplitude of the
perturbation is small enough. However, as was shown in [Hog89] for the rocking block
model, for ε large enough an infinite number periodic orbits surrounding the origin can
exist. This was studied analytically and numerically for the rocking block model under
symmetry assumptions for the particular case m = 1. Here, our goal is to relate the pe-
riodic orbits existing for the dissipative case to those which exist for r = 1 in the general
system (5.2.2),(5.2.18). As will be shown below, all the periodic orbits given by Theo-
rem 5.3.1 can also exist for the dissipative case, when r < 1 is small enough compared
with ε > 0. In other words, we generalise in this section the result presented for the
conservative case.

As in §5.3.1, in order to obtain the initial conditions of a (n,m)-periodic orbit for
r < 1, one has to solve the equation

P̃m
ε,r(y0, t0) = (y0, t0 + nT ), (5.3.8)

where P̃ε,r, is defined in Eq. (5.2.19). The next result states that, under certain conditions
regarding r and ε, Eq. (5.3.8) can be solved.

Theorem 5.3.2. Consider system (5.2.2),(5.2.18). Let (0, ȳ0, t̄0) ∈ Σ̃+ be such that
α(ȳ0) = nT

m
, with n and m relatively prime, and t̄0 a simple zero of the subharmonic

Melnikov function (5.3.3). There exists ρ such that, given ε̃, r̃ > 0 satisfying 0 < r̃
ε̃
< ρ,

there exists δ0 such that, if ε = ε̃δ and r = 1 − r̃δ, then ∀ 0 < δ < δ0 there exists (y∗0, t
∗
0)

which is a solution of Eq. (5.3.8). Moreover, y∗0 = ȳ0 +O(δ), t∗0 = t̄0 +O(δ) +O(r̃/ε̃) and
the solution (y∗0, t

∗
0) tends to the one given in Theorem 5.3.1 as r → 1−.

Proof. As in the conservative case, we use the unperturbed Hamiltonian to measure the
distance between points in Σ. Then, Eq. (5.3.8) can be rewritten as


 H0

(
0,Πy0(P̃

m
ε (y0, t0))

)

Πt0

(
P̃m
ε (y0, t0)

)

−

(
H0(0, y0)
t0 + nT

)
=

(
0
0

)
. (5.3.9)

As in Theorem 5.3.1, we proceed by expanding this equation in powers of ε and r − 1
using (5.2.26) and (5.2.27) obtaining




y20
2

(r4m − 1) + εGm(y0, t0) +O(ε2) +O(ε(r − 1))
m−1∑

i=0

α+(r2iy0) +
m−1∑

i=0

α−
(
−r2i+1y0

)
+O(ε)− nT


 =

(
0
0

)
. (5.3.10)
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Note that, for r = 1, Eq. (5.3.10) becomes Eq. (5.3.5).
We are interested in studying Eq. (5.3.10) when 1−r and ε are both small. Therefore,

for ε̃ > 0 and r̃ > 0 we set
ε = ε̃δ, r = 1− r̃δ, (5.3.11)

where δ > 0 is a small parameter. Then Eq. (5.3.10) becomes

F̃ n,m(y0, t0, δ) :=(
−2mr̃y2

0 + ε̃Gm(y0, t0) +O(δ)
mα(y0) +O(δ)− nT

)
=

(
0
0

)
. (5.3.12)

We now need to apply the implicit function theorem to (5.3.12).
The first step is to solve Eq. (5.3.12) for δ = 0. The second equation gives α(ȳ0) = nT

m
, as

in Theorem 5.3.1. To solve the first equation, we define

fn,m(t0) = −2mr̃ȳ2
0 + ε̃Mn,m(t0), (5.3.13)

and t̂0 will be given by a zero of fn,m(t0). Assume now that t̄0 is a simple zero of Mn,m(t0).
As Mn,m(t0) is a smooth periodic function, it possesses at least one local maximum. Let
tM be the closest value to t̄0 where Mn,m(t0) possesses a local maximum, and assume
(Mn,m)′ (t0) 6= 0 for all t0 between t̄0 and tM . If (Mn,m)′ (t0) vanishes between t̄0 and tM ,
we then take tM to be the closest value to t̄0 such that (Mn,m)′ (t0) = 0 to ensure that

(Mn,m)′ (t0) 6= 0 between t̄0 and tM . We then define ρ := Mn,m(tM )

2mȳ20
. Then, if

0 <
r̃

ε̃
< ρ, (5.3.14)

there exists t̂0
r̃
ε̃
-close to t̄0 where fn,m(t0) has a simple zero. Since α′(ȳ0) > 0, a similar

calculation to the one in Theorem 5.3.1 shows that

det
(
DF̃y0,t0

(
ȳ0, t̂0, 0

))
6= 0,

and hence we can apply the implicit function theorem near (y0, t0, δ) = (ȳ0, t̂0, 0) to show
that there exists δ0 such that, if 0 < δ < δ0, then there exists

(y∗0, t
∗
0) = (ȳ0, t̂0) +O(δ) = (ȳ0, t̄0) +O(δ) +O(r̃/ε̃)

which is a solution of Eq. (5.3.8).
This solution tends to the one given by Theorem 5.3.1 when r̃ → 0+ . This is a natural
consequence of the fact that P̃m

ε,r uniformly tends to Pm
ε as r → 1−.

Remark 5.3.3. In order to determine ρ in (5.3.14), we have imposed tM to be the local
maximum of the Melnikov function closest to its simple zero, t̄0. Instead, one could also
use the absolute maximum so increasing the range given in Eq. (5.3.14). However, in this
case, the values where (Mn,m

1 )′ (t0) = 0 have to be avoided to ensure that the desired zero
of fn,m(t0) is simple.
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Remark 5.3.4. Arguing as in Remark 5.3.1, for every m fixed, the constant δ0(m) can be
taken such that if δ < δ0(m), there exist periodic orbits for all n such that α(nT

m
)−1 ∈ Σ̃.

5.4 Intersection of the separatrices

We now focus our attention on the invariant manifolds of the saddle points of sys-
tem (5.2.2),(5.2.18) when ε > 0. As explained in §5.2, for ε = 0, there exist two het-
eroclinic orbits connecting the critical points z± if r = 1 (see Fig. 5.1) whereas, if r < 1,
the unstable manifolds W u(z±) spiral discontinuously from z± to the origin and W s(z±)
becomes unbounded (see Fig. 5.3). As we will show, in both cases, heteroclinic orbits
may exist for the perturbed system.

For a smooth system with Hamiltonian K0(x, y) + εK1(x, y, t), the persistence of ho-
moclinic or heteroclinic connections is achieved by the well known Melnikov method which
states that if the Melnikov function

M(t0) =

∫ +∞

−∞
{K0, K1} (φ (t; t0, z0, 0) , t+ t0) dt,

with z0 = (x0, y0) ∈ W u(z−) = W s(z+), has a simple zero, then the stable and unstable
manifolds intersect for ε > 0 small enough (see [GH83]).
In this section we will modify the classical Melnikov method and we will rigorously prove
that it is still valid for a piecewise-smooth system of the form (5.2.2), even if r ≤ 1.
There exist in the literature several works where this tool has been used in particular
piecewise-smooth examples, [Hog92, BK91]. Theorem 5.4.1 generalises the result stated
in [BK91] where the Melnikov method is shown to work, although the proof there is not
complete.
The homoclinic version of a piecewise-defined system with a different topology was stud-
ied in [Kun00, Kuk07, BF08, DZ05, XFR09]. However, as noted in the Introduction, the
tools developed there do not apply for a system of the type (5.2.2).

We begin by discussing the persistence of objects for ε > 0 and r ≤ 1. It is clear
that by separately extending the systems X±0 + εX±1 to R2 × T, where T = R/T , we get
two smooth systems for which the classical perturbation theory holds. It follows then
that, as z± are hyperbolic fixed points, for ε > 0 small enough there exist two hyperbolic
T -periodic orbits, Λ±ε ≡ {z±ε (τ); τ ∈ [0, T ]}, with two-dimensional stable and unstable
manifolds W s,u(Λ±ε ).
As the system is non-autonomous, we fix the Poincaré section

Θt0 =
{

(x, y, t0), (x, y) ∈ R2
}
,
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z− z+z+
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xx
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Wu
(
z−ε (t0)
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(
z+ε (t0)

)

z−ε (t0)

z+ε (t0)

zu

zs
z0

Figure 5.6: Section of the unperturbed and perturbed invariant manifolds for t = t0.

and consider the time T stroboscopic map

Πt0 : Θt0 −→ Θt0+T ,

where
Πt0(z) = φ(t0 + T ; t0, z, ε, r)

and φ is defined §5.2.4.
This map has z±ε (t0) as hyperbolic fixed points with one dimensional stable and unstable
manifolds (curves) W s,u(z±ε (t0)) (see Fig. 5.3). Proceeding as in [BK91], we fix the section
Σ defined in (5.2.1) and study its intersection with the stable and unstable manifolds
W u(z−ε (t0)) and W s(z+

ε (t0)). In the unperturbed conservative case (ε = 0 and r = 1),
W u(z−) and W s(z+) intersect transversally Σ in a point z0. The perturbed manifolds,
W u(z−ε (t0)) and W s(z+

ε (t0)), intersect Σ at points zu(t0) and zs(t0) respectively, ε-close
to z0 (see Fig. 5.6). Recalling the effect of the coefficient of restitution (5.2.18) explained
in §5.2.3, both invariant manifolds will intersect if, for some t0, one has rzu(t0) = zs(t0),
r ≤ 1. As in [BK91] and [Hog92], we use the unperturbed Hamiltonian H0(x, y) to
measure the distance ∆(t0, ε, r) between zu and zs

∆(t0, ε, r) = H0(rzu(t0))−H0(zs(t0)) = r2H0(zu(t0))−H0(zs(t0)). (5.4.1)

We then have the following result.

Theorem 5.4.1. Consider system (5.2.2),(5.2.18), and let z0 = W s(z+)∩Σ. Define the
Melnikov function

M(t0) =

∫ +∞

−∞
{H0, H1} (φ (t; t0, z0, 0) , t) dt, (5.4.2)
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where

φ(t; t0, z0, 0) =

{
φ−(t; t0, z0, 0) if t ≤ t0
φ+(t; t0, z0, 0) if t > t0

(5.4.3)

is the piecewise-smooth heteroclinic orbit that exists for r = 1 and ε = 0. Assume that
M(t0) possesses a simple zero at t̄0. Then the following holds.

a) If r = 1, there exists ε0 > 0 such that, for every 0 < ε < ε0, one can find a simple
zero t∗0 = t̄0 + O(ε) of the function ∆(t0, ε, 1). Hence, the curves W u(z−ε (t∗0)) and
W s(z+

ε (t∗0)) intersect transversally at some point, zh ∈ Σ, ε-close to z0 ∈ Σ, and

{φ(t; t∗0, zh, ε), t ∈ R}

is a heteroclinic orbit between the periodic orbits Λ−ε and Λ+
ε .

b) If r < 1, there exists ρ such that, given ε̃, r̃ > 0 satisfying 0 < r̃
ε̃
< ρ, one can find δ0

such that, if ε = ε̃δ and r = 1 − r̃δ, then, for 0 < δ < δ0, there exists a simple zero
of the function ∆(t0, ε̃δ, 1− r̃δ) of the form t∗0 = t̄0 + O( r̃

ε̃
) + O(δ). Hence, the curves

W u(z−ε (t∗0)) and W s(z+
ε (t∗0)) intersect Σ transversally at two points, z±h ∈ Σ, satisfying

z+
h = z0 +O(δ) and z−h = z+

h /r, such that
{
φ(t; t∗0, z

+
h , ε̃δ, 1− r̃δ), t ∈ R

}

is a heteroclinic orbit between the periodic orbits Λ−ε and Λ+
ε .

Remark 5.4.1. Note that, for r = 1, we recover the classical result given by the Melnikov
method for heteroclinic orbits extended to the piecewise-smooth system (5.2.2).

Proof. Applying the fundamental theorem of calculus to the functions

s 7−→ H
+/−
0

(
φ+/− (s; t0, zs/u, ε

))
,

we obtain

H
+/−
0

(
zs/u

)
= H±0 (φ

(
T s/u; t0, z

s/u, ε
)

+

∫ t0

T s/u

d

ds
H

+/−
0

(
φ+/− (s; t0, zs/u, ε

)
ds
)
,

and then make T s/u = +/−∞. However, the limits

lim
t→+/−∞

φ+/−(t; t0, z
s/u, ε)

do not exist because the flow at the respective stable/unstable manifolds tends to the
periodic orbit Λ±ε . To avoid this limit, we proceed as follows.
Given t0, we define

f−(s) = H−0
(
φ− (s; t0, z

u, ε)
)
−H−0

(
φ−
(
s; t0, z

−
ε (t0), ε

))
, s ≤ t0

f+(s) = H+
0

(
φ+ (s; t0, z

s, ε)
)
−H+

0

(
φ+
(
s; t0, z

+
ε (t0), ε

))
, s ≥ t0,

(5.4.4)
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which are well defined smooth functions because the flow is restricted to the stable and
unstable invariant manifolds or to the hyperbolic periodic orbit and never crosses the
switching manifold Σ.
Then, we write Eq. (5.4.1) as

∆(t0, ε, r) = r2f−(t0)− f+(t0) + r2H−0
(
z−ε (t0)

)
−H+

0

(
z+
ε (t0)

)
. (5.4.5)

Noting that

H±0 (z±ε (t0)) = H±0 (z±)︸ ︷︷ ︸
c1

+εDH±0 (z±)︸ ︷︷ ︸
q
0

∂z±ε (t0)

∂ε
|ε=0 +O(ε2), (5.4.6)

Eq. (5.4.5) becomes

∆(t0, ε, r) = r2f−(t0)− f+(t0) + (r2 − 1)c1 +O(ε2) (5.4.7)

We apply the fundamental theorem of calculus to the functions (5.4.4) to compute

f−(t0) = f−(T u) +

∫ t0

Tu

f ′−(s)ds =

f−(T u) + ε

∫ t0

Tu

({
H−0 , H

−
1

} (
φ− (s; t0, z

u, ε) , s
)

−
{
H−0 , H

−
1

} (
φ−
(
s; t0, z

−
ε (t0) , ε

)
, s
) )
ds

f+(t0) = f+(T s)−
∫ T s

t0

f ′+(s)ds =

f+(T s)− ε
∫ T s

t0

({
H+

0 , H
+
1

} (
φ+ (s; t0, z

s, ε) , s
)

−
{
H+

0 , H
+
1

} (
φ+
(
s; t0, z

+
ε (t0) , ε

)
, s
) )
ds.

(5.4.8)

Due to the hyperbolicity of the periodic orbits Λ±ε , the flow on W s/u(Λ
+/−
ε ) converges

exponentially to them (forwards or backwards in time). That is, there exist positive
constants C, λ and s0 such that

∣∣∣φ+ (s; t0, z
s, ε)− φ+

(
s; t0, z

+
ε (t0), ε

) ∣∣∣ < Ce−λs, ∀s > s0,

and similarly for φ−. This allows one to make T s/u → +/−∞ in Eqs. (5.4.8), since

lim
s→±∞

f±(s) = 0
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and, moreover, the improper integrals converge in the limit.
Now, expanding the expressions in (5.4.8) in powers of ε, we find

f−(t0) = ε

∫ t0

−∞

{
H−0 , H

−
1

} (
φ− (s; t0, z0, 0) , s

)
ds+O(ε2)

f+(t0) = −ε
∫ ∞

t0

{
H+

0 , H
+
1

} (
φ+ (s; t0, z0, 0) , s

)
ds+O(ε2),

(5.4.9)

where we have used property (5.4.6) to include the second terms in the integrals into the
higher order terms. Finally, substituting Eq. (5.4.9) into Eq. (5.4.7), we obtain

∆(t0, ε, r) = (r2 − 1)c1 + εM(t0) +O(ε2) +O(ε (r − 1)), (5.4.10)

where M(t0) is defined in Eq. (5.4.2).
We now distinguish between the cases r = 1 and r < 1. If r = 1, we recover the classical

expression for the distance between the perturbed invariant manifolds. By applying the
implicit function theorem, it is easy to show that, if M(t0) has a simple zero at t̄0,
then ∆(t0, ε, 1) has a simple zero at t∗0 = t̄0 + O(ε). Thus, the curves W u(z−ε (t∗0)) and
W s(z+

ε (t∗0)) intersect Σ transversally at some point, zh = zu(t∗0) = zs(t∗0) ∈ Σ, ε-close to
z0 ∈ Σ. Therefore,

{φ(t; t∗0, zh, ε), t ∈ R} ,
is a heteroclinic orbit between the periodic orbits Λ−ε and Λ+

ε .

If r < 1, we define ε = ε̃δ and r = 1− r̃δ, and Eq. (5.4.10) becomes

∆(t0, ε̃δ, 1− r̃δ)
δ

= −2r̃c1 + ε̃M(t0) +O(δ). (5.4.11)

Then we argue as in Theorem 5.3.2. As M(t0) is a smooth periodic function, it possesses
at least one local maximum. Let tM be the closest value to t̄0 where M(t0) possesses a
local maximum, and assume M ′(t0) 6= 0 for all t0 between t̄0 and tM . If M ′(t0) vanishes
between t̄0 and tM , we then take tM to be the closest value to t̄0 such that M ′(t0) = 0 to

ensure that M ′(t0) 6= 0 between t̄0 and tM . We then define ρ := M(tM )
2c1

. Then, if

0 <
r̃

ε̃
< ρ,

there exists t̂0
r̃
ε̃
-close to t̄0 such that

−2r̃c1 +M(t̂0) = 0

and M ′(t̂0) 6= 0. Hence, we can apply the implicit function theorem to Eq. (5.4.11) near
the point (t0, δ) = (t̂0, 0) to conclude that there exists δ0 such that, if 0 < δ < δ0, then
one can find

t∗0 = t̂0 +O(δ) = t̄0 +O(δ) +O(r̃/ε̃)
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α

αx

R

aH (t)

g

OO′

Figure 5.7: Rocking block

which is a simple solution of Eq. (5.4.11).
Hence, arguing similarly as for r = 1, there exist two points z+

h = zs(t∗0) = z0 +O(δ) and
z−h = zu(t∗0) = z0/r +O(δ)r such that z+

h = rz−h and

{
φ(t; t∗0, z

+
h , ε̃δ, 1− r̃δ), t ∈ R

}

where

φ
(
t; t∗0, z

+
h , ε, r

)
=

{
φ−
(
t; t0, t

∗
0, z

+
h /r, ε

)
if t ≤ t∗0

φ+
(
t; t0, t

∗
0, z

+
h , ε
)

if t ≥ t∗0

is a heteroclinic orbit between the periodic orbits Λ−ε and Λ+
ε .

5.5 Example: the rocking block

5.5.1 System equations

In order to illustrate our results, we consider the mechanical system shown in Fig. 5.7,
which consists of a rocking block under a horizontal periodic forcing given by

aH(t) = εαg cos (Ωt+ θ) . (5.5.1)

This system was first studied in [Hou63]. The fixed angle between one side of the block
and the diagonal through the mass centre is denoted by α. When there is rotation, the
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angular displacement from the vertical is given by αx. Then, the equations that govern
the motion of the bock, after a time scaling, are given by

αẍ+ sign(x) sin(α(1− sign (x)x)) =

− αε cos (α (1− sign (x)x)) cos (ωt) (5.5.2)

ẋ(t+A) = rẋ(t−A) (x = 0) (5.5.3)

where ω =
√

4R
3g

Ω (see for example [YCP80, SK84, Hog89] for details).

The last equation, (5.5.3), simulates the loss of energy of the block at every impact with
the ground, as described in §5.2.3 and the function

sign(x) =

{
1 if x > 0

−1 if x < 0
(5.5.4)

distinguishes between the two modes of movement: rocking about the point O when
x > 0 or rocking about O′ when x < 0. Hence equations (5.5.2)–(5.5.4) are piecewise-
smooth, conditions C.1–C.5 are satisfied and so results from previous sections can be
applied. However, as our purpose is to compare with [Hog89], we will consider the the
terms linear in α of Eq. (5.5.2) instead, which will permit us to perform explicit analytical
computations. This linearization is equivalent to the assumption that the block is slender
[Hog89]. Thus, the system that we will consider, written in the form of Eq. (5.2.2), is

ẋ =y

ẏ =x− 1− ε cos (ωt)

}
if x > 0 (5.5.5)

ẋ =y

ẏ =x+ 1− ε cos (ωt)

}
if x < 0 (5.5.6)

y(t+A) = ry(t−A) (x = 0), (5.5.7)

where the perturbation becomes a smooth function due to the linearization.
If r = 1, system (5.5.5)-(5.5.6) can be written in the form (5.2.5) using the Hamiltonian
function

Hε(x, y, t) = H0(x, y) + εH1(x, t), (5.5.8)

where

H0(x, y) =





y2

2
− x2

2
+ x, if x > 0

y2

2
− x2

2
− x, if x < 0

(5.5.9)
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and
H1(x, t) = x cos (ωt) (5.5.10)

is a C∞ and T -periodic function, with T = 2π/ω.
In addition, when ε = 0, conditions C.1–C.5 are fulfilled, and the phase portrait for the
system (5.5.5)-(5.5.6) is equivalent to the one shown in Fig. 5.1. That is, it possesses an
invisible fold-fold of centre type at the origin and two saddle points at (1, 0) and (−1, 0)
connected by two heteroclinic orbits.
Furthermore, the origin is surrounded by a continuum of periodic orbits whose peri-
ods monotonically increase as they approach to the heteroclinic connections. This can
be shown as follows. Using Eqs. (5.2.15) and (5.2.16), the symmetries of the Hamilto-
nian (5.5.9) and assuming y0 > 0, these periods are given by

α(y0) = 4

∫ 1−
√

1−y20

0

1√
y2

0 + x2 − 2x
dx =

= 2 ln

(
1 + y0

1− y0

)
, (5.5.11)

and hence α′(y0) > 0.

5.5.2 Existence of periodic orbits

We first study the persistence of (n,m)-periodic orbits for r = 1 in Eq. (5.5.7) by applying
Theorem 5.3.1. The subharmonic Melnikov function (5.3.3) becomes

Mn,m(t0) = −
∫ nT

0

Πy(qc(t)) cos(ω (t+ t0))dt, (5.5.12)

where qc(t) is the periodic orbit of the unperturbed version of system (5.5.5)-(5.5.6) with

energy level c =
ȳ20
2

satisfying qc(0) = (0, ȳ0) and

ȳ0 = α−1

(
nT

m

)
=
e

nT
2m − 1

e
nT
2m + 1

. (5.5.13)

We now want to obtain an explicit expression for Eq. (5.5.12). Thus we first note that
the solution of system (5.5.5)-(5.5.6) with initial condition (x0, y0) at t = t0 is given by

x±(t) = C±1 e
t + C±2 e

−t ± 1 (5.5.14)

y±(t) = C±1 e
t − C±2 e−t, (5.5.15)

where

C±1 =
x0 + y0 ∓ 1

2
e−t0 , C±2 =

x0 − y0 ∓ 1

2
et0 . (5.5.16)
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As explained in §5.2.4, the superscript + is applied if x0 > 0 or x0 = 0 and y0 > 0, and
the superscript − otherwise.
Assuming x0 = 0 and y0 = ȳ0 > 0, it can be shown that

Πy(qc(t)) =





C1e
t − C2e

−t, if 0 ≤ t ≤ nT

2m

−C1e
t−nT

2m + C2e
−t+nT

2m , if
nT

2m
≤ t ≤ nT

m
,

(5.5.17)

where

C1 =
ȳ0 − 1

2
, C2 =

−ȳ0 − 1

2
. (5.5.18)

Thus, Eq. (5.5.12) becomes

Mn,m(t0) = −
m−1∑

j=0

(∫ nT
2m

0

(
C1e

t − C2e
−t) cos

(
ω

(
t+ t0 + j

nT

m

))
dt

+

∫ nT
m

nT
2m

(
−C1e

t−nT
2m + C2e

−t+nT
2m

)
cos

(
ω

(
t+ t0 + j

nT

m

))
dt

)

and, after some computations, we have

Mn,m(t0) =




− 4

ω2 + 1
cos (ωt0) , if m = 1

0, if m > 1.
(5.5.19)

As Mn,1(t0) has two simple zeros, t̄10 = T
4

and t̄20 = 3T
4

, by Theorem 5.3.1, if ε > 0
is small enough, the non-autonomous system (5.5.5)-(5.5.6) possesses two subharmonic
(n, 1)-periodic orbits. In addition, the initial conditions of these periodic orbits are ε-close
to

(0, ȳ0, t̄
1
0) = (0,

e
nT
2 − 1

e
nT
2 + 1

,
T

4
) (5.5.20)

and

(0, ȳ0, t̄
2
0) = (0,

e
nT
2 − 1

e
nT
2 + 1

,
3T

4
), (5.5.21)

respectively.
Proceeding as in Remark 5.3.2, one can solve Eq. (5.3.2) numerically with m = 1 and
find the initial conditions for such a periodic orbit. In Fig. 5.8 we show the results for
n = 5. Both periodic orbits are obtained by using the points given in Eqs. (5.5.20) and
(5.5.21) to initiate Newton’s method. Then, following the solution, ε was increased up to
ε = 1.6565 · 10−2.
Since the subharmonic Melnikov function is identically zero, nothing can be said about
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Figure 5.8: Periodic orbits for n = 5 and m = 1, r = 1, ω = 5 and ε = 1.6565 · 10−2.
Their initial conditions are ε-close to the points given in Eqs. (5.5.20) and (5.5.21).

the existence of (n,m)-periodic orbits with m > 1 (ultrasubharmonic orbits), using the
first order analysis given in this work.
However, if instead of (5.5.10) one considers the perturbation

H1(x, t) = x (cos (ωt) + cos (kωt)) ,

then, it can be seen that the corresponding Melnikov function possesses simple zeros for
m = k and n relatively prime odd integers. Thus, periodic orbits impacting m > 1 times
with the switching manifold can exist if higher harmonics of the perturbation are consid-
ered.

Let us now introduce the energy dissipation described in §5.3.2 and consider the whole
system (5.5.5)-(5.5.7) with r < 1 using the Hamiltonian perturbation (5.5.8). From
Theorem 5.3.2, simple zeros of the Melnikov function (5.5.19) also guarantee the existence
of (n, 1)-periodic orbits when 1− r is small enough compared to ε. More precisely, taking

ε = ε̃δ, r = 1− r̃δ, (5.5.22)

condition (5.3.14) becomes

0 <
r̃

ε̃
<

1

2

(
e

nT
2 + 1

e
nT
2 − 1

)2

Mn,1(tM) := ρ, (5.5.23)
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(b) δ = 4.125

Figure 5.9: (5, 1)-periodic orbits for ω = 5 and r̃
ε̃

= 0.07. Following the obtained solu-
tion, the perturbation parameter δ has been increased up to its maximum value. Initial
conditions close to (ȳ0, t̂

1
0) and (ȳ0, t̂

2
0) have been used in (a) and (b), respectively.

whereMn,1(tM) = Mn,1(T
2
) = 4

ω2+1
is the maximum value of the Melnikov function (5.5.19).

Then, according to Theorem 5.3.2, there exists an (n, 1)-periodic orbit if δ > 0 is small
enough. The initial condition of the periodic orbit is located in a δ-neighbourhood of the
point (x0, y0, t0) = (0, ȳ0, t̂0), where ȳ0 is defined in Eq. (5.5.13), such that

α(ȳ0) = nT

and t̂0 is given by the simple zeros of Eq. (5.3.13), which becomes

−2r̃ȳ2
0 + ε̃Mn,1(t0) = 0. (5.5.24)

Hence we find

t̂i0 =
1

ω
arccos


−ω

2 + 1

2

(
e

nT
2 − 1

e
nT
2 + 1

)2
r̃

ε̃


+ (i− 1)

T

2
, i = 1, 2. (5.5.25)

As before, if we set n = 5 and ω = 5, then expression (5.5.23) becomes

0 <
r̃

ε̃
< 0.0914. (5.5.26)

Hence, for any fixed ratio r̃
ε̃

satisfying (5.5.26) there exist two points, (ȳ0, t̂
i
0), i = 1, 2,

such that, if δ is small enough, Eq. (5.3.10) possesses a solution δ-close to them. Such a
solution is an initial condition for an (n, 1)-periodic orbit of system (5.5.5)-(5.5.7), with
r = 1− r̃δ and ε = ε̃δ.

In Fig. 5.9 some of these orbits are shown for one value of the ratio r̃
ε̃

satisfying (5.5.26).

Two different periodic orbits are shown, whose initial conditions are δ-close to (ȳ0, t̂
1
0) and
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(ȳ0, t̂
2
0). In both cases, δ tracks the solution, up to values where solutions of Eq. (5.3.9)

can no longer be found. These values are used in the simulations shown in Fig. 5.9. Note
that, above the limiting value of the ratio given in (5.5.26), no (5, 1)-periodic orbits were
found for ω = 5 for any value of δ.

5.5.3 Existence curves

We now derive existence curves for the (n, 1)-periodic orbits (n odd) and compare them
with results obtained in [Hog89].
By integrating the linearized system and imposing symmetry conditions on the orbit, an
explicit expression for the existence of (n, 1)-periodic orbits in the r-ε plane was obtained
in [Hog89], namely

εmin(R) =
(1 + ω2)R

(
1− cosh

(
nT
2

))
√
ω2 sinh2

(
nT
2

)
R2 + (2−R)2 (1 + cosh

(
nT
2

))2
, (5.5.27)

where R = 1 − r. This exact global formula provides, for every n and r, the minimum
value of the amplitude of the perturbation εmin such that a (n, 1)-periodic orbit exists.
Unlike in [Hog89], we obtain similar curves in the r-ε plane by applying Theorem 5.3.2.
As the existence of such orbits in Theorem 5.3.2 is proven using the implicit function
theorem, the existence of these orbits is valid only locally. Hence, such existence curves
are obtained by numerical continuation of the local periodic orbits. However, our method
is more general; it does not depend on the details of the system, the type of perturba-
tion or any symmetry assumptions. Moreover, it can also be applied when considering
ultrasubharmonic periodic orbits (m > 1) as long as the hypothesis of Theorem 5.3.2 are
fulfilled.

The limiting condition provided by Theorem 5.3.2 is given in Eq. (5.5.23). Thus, for
a given r close to 1 (that is, r̃δ close to 0), it is natural to fix r̃ and minimize ε by
maximizing the ratio in (5.5.23), setting 1−r

ε
= r̃δ

ε̃δ
= r̃

ε̃
= ρ. As can be seen in Fig. 5.10

this curve, which is the straight line

1− r = ρε,

is very close to the one obtained in [Hog89], given by (5.5.27).
One might think that these two curves should be identical due to the fact that the sys-
tem appears to be linear in ε and piecewise-linear in x. Nevertheless, it is important to
emphasize that the system solutions are in fact nonlinear in ε, since it is necessary to
solve a nonlinear equation for the time when the solution crosses the switching manifold.
Therefore, the curve r̃

ε̃
= ρ, obtained using Melnikov theory, is not identical to the one

obtained in [Hog89], but both curves are very close when ε is small (see Fig. 5.10).
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As our method applies to general systems, the existence of periodic orbits given by
Theorem 5.3.2 is only valid for δ < δ0 = δ0( r̃

ε̃
). Moreover, δ0 tends to zero as r̃

ε̃
→ ρ, as

it is derived from the implicit function theorem. This is because, as r̃
ε̃
→ ρ, the solution

t̂0 which solves Eq. (5.5.24), tends to tM , where tM is a maximum of Mn,1 and hence
(Mn,1)′(tM) = 0. Therefore, as t̂0 approaches tM , the domain of validity provided by the
implicit function theorem tends to zero, and thus so does δ0 (δ0 = O

(
(Mn,1)′(t̂0)

)
). As a

consequence, it is not possible to find δ∗ = δ0(ρ) > 0 such that for any δ < δ∗ we could
apply Theorem 5.3.2 to obtain periodic orbits. Hence, the condition r̃

ε̃
= ρ can not be

used to derive a limiting relation between r and ε if we use a first order perturbation
theory as in the Melnikov approach. Instead, we proceed as follows.
We first fix n odd and ω > 0. Then, for every ratio 0 < r̃

ε̃
< ρ, we increase δ from 0 to δ0

by numerically following the solution obtained using as initial condition one of the values
provided in Eq. (5.5.20) or (5.5.21). This results in a curve in the r-ε plane parametrized
by the ratio r̃

ε̃
.

As our result is only locally valid, in order to compare it with [Hog89] we have to check
whether both curves are tangent at the origin. From (5.5.27) we easily obtain

ε′min(0) = −1 + ω2

2

(
e

nT
2 − 1

e
nT
2 + 1

)2

= −1

ρ
,

which, by the inverse function theorem, tells us that both curves are tangent at the origin.

In Fig. 5.10, we show an example for n = 5 and ω = 5 using initial conditions
near (5.5.20). As can be seen, the expression derived from Theorem 5.3.2 (black line)
provides, for every value of r, both the maximum and minimum values of ε for which
a (5, 1)-periodic orbit exists, according to our method. The lower boundary derived in
[Hog89], (εmin(·))−1(ε) is also shown (dotted line). As demonstrated above, both curves
are tangent at the origin, with slope equal to ρ. Note, however, that the minimum value
does not coincide with the line 1−r = ρε, although their difference tends to zero as r → 1.
This confirms that one can not derive the minimum value of ε from condition (5.5.23) for
every fixed r.

5.6 Conclusions

In this chapter we have extended the classical Melnikov methods, for subharmonic orbits
and homoclinic/heteroclinic connections, to piecewise-defined Hamiltonian systems with
a piecewise-defined periodic Hamiltonian perturbation. We rigorously prove that, when
the unperturbed system has a piecewise-continuous Hamiltonian, the classical method
also holds. In this case, simple zeros of the modified classical and subharmonic Melnikov
functions guarantee the existence of subharmonic orbits and heteroclinic connections, re-
spectively, in the perturbed system. We have also considered the case when the solution
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Figure 5.10: Existence curves of a (5, 1)-periodic orbit for ω = 5. Expression derived
from Theorem 5.3.2 (black line), expression for εmin derived from [Hog89] (dotted line)
and 1− r = ρε (dashed line).
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trajectories are discontinuous at the switching manifold, as in the case of an impacting
system with energy loss represented by a coefficient of restitution. In this case, the unper-
turbed system has the origin as a global attractor. We have shown that the same results
hold when this restitution coefficient is small enough with respect to the amplitude of the
periodic perturbation.
In addition, our method provides a constructive way to find initial conditions for subhar-
monic orbits. In this way, we have found periodic orbits in the rocking block problem
[Hog89]. We have also numerically obtained existence curves for these periodic orbits,
and we have compared them with those given in [Hog89].

Future work should consider an extension of the method to quasi-periodic or almost-
periodic perturbations. In [MS89] the authors present a generalization of the Melnikov
method for this class of perturbation to smooth systems to show that the perturbed
system has homoclinic trajectories. The Poincaré stroboscopic map is not a suitable
tool for the systems treated in [MS89], as is the case for the periodic perturbations for
piecewise-smooth systems that we have considered here. Hence, we believe that the
results presented here can also be extended to quasi-periodic perturbations by the use of
the impact map.
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Chapter 6

The scattering map in two-coupled
piecewise-smooth systems

6.1 Introduction

As explained in the introduction of this thesis, in this chapter we study the persistence of
invariant manifolds for a system given by the cross product of two of the systems studied
in chapter 5 when considering a small Hamiltonian perturbation which couples both sys-
tems and introduces a periodic forcing. This chapter is organized as follows.
In section 6.2 we introduce and describe the system and its invariant objects before the
perturbation. In section 6.3 we introduce the essential tools, formulas and technical
results which will allow us to rigorously prove the persistence of invariant manifolds (sec-
tion 6.3.6), the existence of heteroclinic transversal intersections (section 6.4.1) and to
define and provide first properties of the scattering map (section 6.4.2).

6.2 System description

6.2.1 Two uncoupled systems

In this work we consider a non-autonomous dynamical system formed by coupling two
piecewise-defined systems in R2 through a non-autonomous periodic perturbation. We
first define these two systems.
Let us split R2 in the two sets,

S+ =
{

(q, p) ∈ R2 | q > 0
}

S− =
{

(q, p) ∈ R2 | q < 0
}

separated by a switching manifold

Σ = Σ+ ∪ Σ− ∪ {(0, 0)} (6.2.1)

107
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where
Σ+ =

{
(0, p) ∈ R2 | p > 0

}

Σ− =
{

(0, p) ∈ R2 | p < 0
}
.

(6.2.2)

Let us consider the piecewise-defined systems defined in R2\Σ
(
ẋ
ẏ

)
:= X (x, y) :=

{
X+(x, y) if (x, y) ∈ S+

X−(x, y) if (x, y) ∈ S− (6.2.3)

(
u̇
v̇

)
:= U(u, v) :=

{
U+(u, v) if (u, v) ∈ S+

U−(u, v) if (u, v) ∈ S− (6.2.4)

with X±(x, y), U±(u, v) ∈ C∞(R2).

Let us assume that (6.2.3) and (6.2.4) are Hamiltonian systems associated, respec-
tively, with the C0(R2) piecewise-defined Hamiltonians of the form

X(x, y) :=
y2

2
+ Y (x)

:=





X+(x, y) :=
y2

2
+ Y +(x) if (x, y) ∈ S+

X−(x, y) :=
y2

2
+ Y −(x) if (x, y) ∈ S−

(6.2.5)

U(u, v) :=
v2

2
+ V (u)

:=





U+(u, v) :=
v2

2
+ V +(u) if (u, v) ∈ S+

U−(u, v) :=
v2

2
+ V −(u) if (u, v) ∈ S−,

(6.2.6)

with Y ±, V ± ∈ C∞(R2) fulfilling Y +(0) = Y −(0) = 0 and V +(0) = V −(0) = 0. Then, we
have the following relations between systems (6.2.3) and (6.2.4) and the piecewise defined
Hamiltonians (6.2.5) and (6.2.6), respectively,

X± = J∇X±
U± = J∇U± (6.2.7)

where J is the Symplectic matrix

J =

(
0 1
−1 0

)
.
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From the form of the Hamiltonians (6.2.5) and (6.2.6), it becomes natural to extend
the definition of the flow of X+ and U+ to S+∩Σ+ and the flows X− and U− to S−∩Σ−.
Hence, the Hamiltonians (6.2.5) and (6.2.6) become naturally extended to R2 as

X(x, y) =

{
X+(x, y) if (x, y) ∈ S+ ∪ Σ+ ∪ {(0, 0)}
X−(x, y) if (x, y) ∈ S− ∪ Σ−,

and similarly for U(u, v).
Note that the vector fields X+ and X− are tangent to Σ at (0, 0) (resp. U+ and U−).
To define the flow associated with system (6.2.3), we proceed as usual in non-smooth
systems. Given an initial condition (x0, y0), we apply φX+ or φX− if (x0, y0) ∈ S±, which
are the flows associated to the smooth systems X±, until the switching manifold Σ is
crossed at some point. Then, using this point as new initial condition one proceeds
evolving with the flow associated with the new domain. Similarly for system (6.2.4).
Note that, as no sliding across the switching manifold is possible, the definition of the
flows becomes very straightforward.
This permits us to consider the flows

φX (t;x0, y0) and φU(t; , u0, v0) (6.2.8)

associated to systems (6.2.3) and (6.2.4), respectively, that are C0 functions piecewise-
defined in t fulfilling

φX (0; , x0, y0) = (x0, y0)

φU(0; , u0, v0) = (u0, v0).

Let us assume that the following conditions are fulfilled

C.1 System (6.2.3) possesses two hyperbolic critical points Q+ ∈ S+ and Q− ∈ S− of
saddle type and belonging to the energy level X(Q±) = d̄.

C.2 There exist two heteroclinic orbits given by W u(Q−) = W s(Q+) and W u(Q+) =
W s(Q−), also located in the level of energy X(x, y) = d̄.

C.3 The Hamiltonians U± in (6.2.6) fulfill

(V +)′(0) > 0, (V −)′(0) < 0,

and so (0, 0) is an invisible quadratic tangency for both vector fields U± in (6.2.4).
Following [Kuz04, GST11], we call the point (0, 0) an invisible fold-fold.
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C.4 System (6.2.4) possesses a continuum of (piecewise-defined) periodic orbits surround-
ing the origin. These can be parametrized by the Hamiltonian U and have the form

Λc =
{

(u, v) ∈ R2 |U(u, v) = c
}
, 0 < c ≤ c̄. (6.2.9)

The main purpose of this chapter is to study the dynamics around one of the heteroclinic
orbits. Hence, we focus from now on one of them, the upper one

γup := W u(Q−) ∩W s(Q+) =
{

(x, y) ∈ R2 |X(x, y) = d̄, y ≥ 0
}
.

There we consider the following parametrization

γup = {σup(t), t ∈ R} (6.2.10)

where σup(t) is the solution of system (6.2.3) fulfilling

σup(0) = (0, yh) ∈ Σ+

lim
t→±∞

σup(t) = Q±, (6.2.11)

where (0, yh), yh =
√
d̄, is given by

(0, yh) = W u(Q−) ∩ Σ = W s(Q+) ∩ Σ.

Equivalently, we could consider the lower heteroclinic connection,

γdown =
{
σdown(t), t ∈ R

}
= W u(Q+) = W s(Q−),

and proceed similarly in the rest of this chapter with γdown.
Before introducing the non-autonomous perturbation which will couple both systems

described above, we roughly describe the invariant objects of the cross product of both
systems (see Fig. 6.1), which is a “Hamiltonian” system with (piecewise-defined) Hamil-
tonian

H0(u, v, x, s) = U(u, v) +X(x, y). (6.2.12)

On one hand, the cross product of the periodic orbits Λc with the critical points Q± gives
raise to periodic orbits, Λc×Q±, which are hyperbolic when restricting the system to the
level of energy U(u, v) +X(x, y) = c+ d̄. Although they are non-regular manifolds due to
the non-smoothness of Λc, as it will be detailed later on §6.3.6 in the extended phase space,
they have stable and unstable (non-regular) manifolds. Moreover, the stable/unstable
manifolds of each periodic orbit of the form Λc × Q+ coincides with the unstable/stable
manifolds of the periodic orbit Λc×Q−, respectively, and hence there exist (non-regular)
heteroclinic manifolds connecting these periodic orbits.
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Q− Q+

y

x

v

u

{(u, v), |U(u, v) = c} =: Λc σup

︷ ︸︸ ︷
Wu(Q−) = W s(Q+)

Wu(Q+) = W s(Q−)︸ ︷︷ ︸
σdown

Figure 6.1: Invariant objects for the unperturbed coupled system.

Also of relevant interest in this work will be the manifold given by the cross product of
the critical points Q± with the union of all periodic orbits

Λ+ =
⋃

c∈[c1,c2]

Λc ×Q+

=
{(
u, v,Q+

)
|U(u, v) = c, c1 ≤ c ≤ c2,

}

Λ− =
⋃

c∈[c1,c2]

Λc ×Q−

=
{(
u, v,Q−

)
|U(u, v) = c, c1 ≤ c ≤ c2

}
,

for some 0 < c1, c2 < c̄. In Fig. 6.2 schematically show these two manifolds.
As it will be shown in §6.3.6, these manifolds will lead to normally hyperbolic invariant

manifolds for the impact map, introduced in §6.3.1.

6.2.2 The coupled system in the extended phase space

As announced above, we will focus our attention on the system given by coupling sys-
tems (6.2.3) and (6.2.4) through a non-autonomous T -periodic Hamiltonian perturbation,
εh(u, v, x, y, s) ∈ C∞(R5) satisfying

h(u, v, x, y, s) = h(u, v, x, y, s+ T ), ∀(u, v, x, y, s) ∈ R5.

Using this property, we will from now on consider the coupled system in the extended
state space R4 × TT , where TT = R\T . Let us remark that consider here TT not as
the usual circle (modulus 1) but modulus T , because T is a relevant parameter from the
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Figure 6.2: Schematic representation of the manifolds Λ+ and Λ−.
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application point of view and hence we prefer to keep it.
We now add the variable A ∈ R to the variables of the extended state space and assume
that the coupled system is, for z = (u, v, x, y), the autonomous system associated with
the C0 Hamiltonian

H̃ε(z̃, A) := A+Hε(z̃)

where

Hε(z̃) := U(u, v) +X(x, y) + εh(z̃), ε > 0, (6.2.13)

with z̃ = (z, s), s ∈ TT .
The addition of the variable A ∈ R, the symplectic conjugate of s, is a standard formality
to keep a Hamiltonian structure for the perturbed system, which is equivalent to adding
the equations

ṡ = 1, Ȧ = − ∂

∂s
Hε(u, v, x, y, s)

plus the terms coming from the perturbation, to the systems (6.2.3)-(6.2.4). Note that
the variable A does not have any influence on the dynamics, as it does not appear in
any differential equation. Thus, we only study the dynamics of the coupled system in the
variables (u, v, x, y, s), and refer to it as a system of two and a half degrees of freedom asso-
ciated with the Hamiltonian Hε(u, v, x, y, s). Recalling that unperturbed systems (6.2.3)
and (6.2.4) are piecewise-defined, these differential equations will be defined in four par-
titions in R4 × TT as follows




u̇
v̇
ẋ
ẏ


 =





J4∇
(
U+ +X+ + εh

)
(z̃)

if z̃ ∈ S+ ∪ Σ+ × S+ ∪ Σ+ × TT
J4∇

(
U− +X+ + εh

)
(z̃)

if z̃ ∈ S− ∪ Σ+ × S+ ∪ Σ− × TT
J4∇

(
U− +X− + εh

)
(z̃)

if z̃ ∈ S− ∪ Σ− × S− ∪ Σ− × TT
J4∇

(
U− +X+ + εh

)
(z̃)

if z̃ ∈ S− ∪ Σ− × S+ ∪ Σ+ × TT
ṡ = 1,

(6.2.14)

where

J4 =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 .

These differential equations define four different autonomous flows in the extended phase
space, φ̃±±(t; z̃0; ε). Letting ϕ±±(t; t0, z0) be the correspondent non-autonomous flows
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such that ϕ±±(t0; t0, z0) = z0, we write φ̃±±(t; z̃0) fulfilling φ̃±±(0; z̃0) = z̃0 as

φ̃±±(t; z̃0) =
(
φ±±(t; z̃0), s0 + t

)
,

where φ±±(t; z̃0) are such that

ϕ±±(t; t0, z0) = φ±±(t− t0; z̃0).

Proceeding similarly as we did for the systems U and X , by properly concatenating
the flows φ̃+± and φ̃−± when the 3-dimensional switching manifold u = 0 is crossed, and
φ̃±+ and φ̃±− when x = 0 is crossed, we can define the solution, φ̃(t; z̃0; ε), of the coupled
system (6.2.14) fulfilling φ̃(0; z̃0; ε) = z̃0. We will give explicit expressions for φ̃ in §6.3.4.
Note that φ̃ is not differentiable at those times corresponding to the crossings with the
switching manifolds, although it is as smooth as the flows φ̃±± when restricted to the
open domains given in the respective branches.

Note that, for ε = 0, the invariant objects described in §6.2.1 for the cross product of
the systems (6.2.3) and (6.2.4) possess now one dimension more due to the addition of
time as a variable. Hence, the periodic orbits Λc × Q±, which where homeomorphic to
the circle, become now the tori Λc ×Q± ×TT . Similarly for the 2-dimensional “invariant
manifolds” Λ±, which become the 3-dimensional “invariant manifolds” Λ± × TT .
This will be explained in more detail in §6.3.6 after introducing the impact map in the
next sections.

6.3 Some notation and properties

6.3.1 Impact map associated with u = 0

Let us define in R4 × TT the section

Σ̃ = Σ× R2 × TT = {(0, v, x, y, s)} (6.3.1)

where

Σ̃+ = Σ+ × R2 × TT = {(0, v, x, y, s) | v > 0} (6.3.2)

Σ̃− = Σ− × R2 × TT = {(0, v, x, y, s) | v < 0} (6.3.3)

and Σ and Σ± are defined in (6.2.2).
Let us observe that Σ̃ is one of the switching manifolds of system (6.2.14) in the extended
phase space, and will play an important role in our constructions. This is the section
crossed by the “normally hyperbolic manifolds” Λc × Q± × TT , and hence these objects
are not regular but just continuous.
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It is now our goal to define the impact map associated with Σ̃, which will be a map
from section Σ̃ to itself. Basically, this map regularizes system (6.2.14) in some open
domains, and will allow us to apply classical results for perturbation theory for smooth
systems in order to rigorously proof incoming results such as persistence of invariant man-
ifolds and their stable and unstable manifolds.
Before introducing this impact map, we first define four intermediate maps involving the
sections Σ̃ and Σ̃± given in (6.3.1)–(6.3.3).

Let us first consider the projection onto the section Σ̃ by the flow φ̃

κε : R4 × TT −→ Σ̃.

That is, given a point z̃ ∈ R4×TT , one evolves, for positive values of time, using the flow
associated with (6.2.14) and described in §6.2.2 until the switching manifold Σ̃ is reached.
Although such a construction is well defined, we are interested on avoiding the concate-
nation of flows due to the crossing with the switching manifold given by x = 0. Hence,
we restrict κε to a suitable domain

Õκε ⊂ R4 × TT (6.3.4)

given by the points whose trajectory by φ̃ first impacts the switching manifold given by
u = 0 (Σ̃) than the one given by x = 0.
We will provide a more precise description of this set in §6.3.2. However, for a better
understanding of the involving geometry, we note that Õκε depends on ε and is formed by
two connected components separated by the section x = 0. In addition, these components
are not empty for ε > 0 small enough, as one can always find points (u, v, x, y, s) with
(x, y) close enough to the critical points Q± and (u, v) close enough to the origin of the
u− v plane, whose trajectory first impacts with the switching surface u = 0 rather than
x = 0.

With this restriction, the map

κε : Õκε ⊂ R4 × TT −→ Σ̃ (6.3.5)

becomes

κε (z̃) =





φ̃++(tΣ̃; z̃; ε) if z̃ ∈ S+ ×
(
S+ ∪ Σ+

)
× TT

φ̃−+(tΣ̃; z̃; ε) if z̃ ∈ S− ×
(
S+ ∪ Σ+

)
× TT

φ̃+−(tΣ̃; z̃; ε) if z̃ ∈ S+ ×
(
S− ∪ Σ−

)
× TT

φ̃−−(tΣ̃; z̃; ε) if z̃ ∈ S− ×
(
S− ∪ Σ−

)
× TT

where tΣ̃ is the smallest value of t ≥ 0 such that φ̃±± (t; z̃; ε) ∈ Σ̃. We can hence precisely
define the set

Õκε =
{
z̃ ∈ R4 × TT |Πx

(
φ̃(t; z̃; ε)

)
6= 0∀t ∈ [0, tΣ̃]

}
,
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ε (z̃)
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Pε(z̃)

Pε(z̃) ΣΣ

Figure 6.3: Schematic representation of the maps P−ε , P+
ε and Pε.

where Πx is the projection onto the x axis and φ̃(t; z̃; ε) is the flow associated with sys-
tem (6.2.14), which, for t ∈ [0, tΣ̃], coincides with one of the flows φ̃±±(t; z̃; ε) and hence
is well defined and smooth.

Similarly, we consider an open set Õκ̄ε and define the map

κ̄ε : Õκ̄ε ⊂ R4 × TT −→ Σ̃ (6.3.6)

projecting to Σ̃ backwards in time. That is, considering tΣ̃ ≤ 0. Hence Õκ̄ε becomes

Õκ̄ε =
{
z̃ ∈ R4 × TT |Πx

(
φ̃(t; z̃; ε)

)
6= 0∀t ∈ [tΣ̃, 0]

}
.

Remark 6.3.1. The maps κε and κ̄ε are continuous in (R2 × R2 × TT ) \Σ̃. For z̃ ∈ Σ̃,
we have that tΣ̃ = 0 and therefore κε|Σ̃ = Id. In fact, for z̃ ∈ Σ̃, κε is continuous on the
left but not on the right, and viceversa for κ̄ε.

We provide in Fig.6.3 a schematic representation of the definitions that follow.
We also consider two sets ÕP+

ε
⊂ Σ̃+ and ÕP−ε ⊂ Σ̃− with the same characteristics

described for Õκε . That is, these are the set of points in Σ̃+ and Σ̃− whose trajectories
first hit the switching manifold given by u = 0, Σ̃, rather than the one given by x = 0.
Then we define two maps

P+
ε : ÕP+

ε
⊂ Σ̃+ −→ Σ̃− (6.3.7)

P−ε : ÕP−ε ⊂ Σ̃− −→ Σ̃+ (6.3.8)
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as follows.

If z̃ = (0, v, x, y, s) ∈ ÕP+
ε
⊂ Σ̃+ (v > 0), then

P+
ε (z̃) =

{
φ̃++(tΣ̃− ; z̃; ε) if z̃ ∈ Σ+ ×

(
S+ ∪ Σ+

)
× TT

φ̃+−(tΣ̃− ; z̃; ε) if z̃ ∈ Σ+ ×
(
S− ∪ Σ−

)
× TT

where tΣ̃− is the smallest value of t > 0 such that φ̃+± (t; z̃; ε) ∈ Σ̃−. The set ÕP+
ε

becomes
then

ÕP+
ε

=



z̃ ∈ Σ+ × R2 × TT︸ ︷︷ ︸

Σ̃+

|Πx

(
φ̃(t; z̃; ε)

)
6= 0∀t ∈ [0, tΣ̃− ]



 , (6.3.9)

and, as Õκε , has two connected components in Σ+ × (S+ ∪ Σ+) × TT and Σ+ × (S− ∪
Σ−)× TT .
If ε = 0, we can provide an explicit expression for P+

0 as follows.
Let us recall that the flows φ̃±± consist on the uncoupled flows φU and φX described
in (6.2.8) but extended by adding the time s as state variable. Regarding conditions C.1–
C4, the phase portrait of system U is formed by the continuum of periodic orbits, Λc,
which, due to the expression of the Hamiltonian U , are symmetric with respect to v = 0.
Hence, the map P+

0 can be written as

P+
0 (0, v, x, y, s) =

(
0,−v, φX (α+(v);x, y), s+ α+(v)

)
,

where

α+(v) = 2

(V +)−1(c)∫

0

1√
2(c− V +(x))

dx, c = U(0, v) =
v2

2
(6.3.10)

is the time taken by the flow φU(t; 0, v), with v > 0, to reach Σ−. In the case that the
Hamiltonian U is symmetric with respect to u = 0, this is half of the period of the periodic
orbit Λc.
We will give a detailed description of ÕP+

0
in §6.3.2.

Finally, if z̃ = (0, v, x, y, s) ∈ ÕP−ε ⊂ Σ̃− (v < 0), then we similarly define

P−ε (z̃) =

{
φ̃−+(tΣ̃+ ; z̃; ε) if z̃ ∈ Σ− ×

(
S+ ∪ Σ+

)
× TT

φ̃−−(tΣ̃+ ; z̃; ε) if z̃ ∈ Σ− ×
(
S− ∪ Σ−

)
× TT ,

where tΣ̃+ is the smallest value of t > 0 such that φ̃−± (t; z̃; ε) ∈ Σ̃+.
Hence, the set ÕP−ε becomes

ÕP−ε =



z̃ ∈ Σ− × R2 × TT︸ ︷︷ ︸

Σ̃−

|Πx

(
φ̃(t; z̃; ε)

)
6= 0∀t ∈ [0, tΣ̃+ ]



 .
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If ε = 0, the map P−0 becomes

P−0 (0, v, x, y, s) =
(
0,−v, φX (α−(v);x, y), s+ α−(v)

)
,

where

α−(v) = −2

(V −)−1(c)∫

0

1√
2(c− V −(x))

dx, c = U(0, v) =
v2

2
(6.3.11)

is the time taken by the flow φU(t; 0, v), with v < 0, to reach Σ+.

Finally, as it is usual when dealing with piecewise-defined systems, we construct the
impact map as the composition of the maps P±ε . Let us consider an open set,

ÕPε ⊂ ÕP+
ε
∪ ÕP−ε ⊂ Σ̃, (6.3.12)

and we define the Poincaré impact map

Pε : ÕPε ⊂ Σ̃ −→ Σ̃

as

Pε(0, v, x, y, s) =

{
P+
ε ◦ P−ε (0, v, x, y, s) if (0, v, x, y, s) ∈ ÕP−ε ⊂ Σ̃−

P−ε ◦ P+
ε (0, v, x, y, s) if (0, v, x, y, s) ∈ ÕP+

ε
⊂ Σ̃+

From now on, we will eventually omit the repetition of the coordinate u = 0, identifying
Σ̃ ' R3 × TT . Moreover, we will use the following notation. When considering points
(0, v, x, y, s) ∈ Σ̃ ⊂ R4 × TT , we will refere to them as ω̃ = (v, x, y, s). We will include
these points again back in R4 × TT , writing z̃ = (0, ω̃).
Hence, the new variable of the impact map will be ω̃. To avoid further complication on
the notation, we will consider the set ÕPε in R3 × TT and write the impact map

Pε : ÕPε −→ R3 × TT (6.3.13)

as

Pε(ω̃) =

{
P+
ε ◦ P−ε (ω̃) if ω̃ ∈ ÕP−ε
P−ε ◦ P+

ε (ω̃) if ω̃ ∈ ÕP+
ε

(6.3.14)

The domain ÕPε is defined as

ÕPε =
{
ω̃ = (v, x, y, s) ∈ ([−v2,−v1] ∪ [v1, v2])× R2 × TT

|Πx

(
φ̃(t; (0, ω̃) ; ε)

)
6= 0∀t ∈ [0,Πs (Pε(ω̃))− s]

}

and is formed by four connected subsets located in [v1, v2]×R2×TT and [−v2,−v1]×R2×TT
which will be more precisely described in §6.3.2.
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As we did for the maps P±0 , if ε = 0 we can also obtain a closed expression for the map
P0,

P0(v, x, y, s) = (v, φX (α(v);x, y), s+ α(v)) ,

where
α(v) = α+(|v|) + α−(−|v|) (6.3.15)

is the period of the periodic orbit Λc, with c = U(0, v), that system (6.2.4) possesses, and
φX (t;x, y) is φ+

X (t;x, y) if (x, y) ∈ Σ+ ∪ S+ and φ−X (t;x, y) if (x, y) ∈ Σ− ∪ S−.
Note that the map Pε is invertible in ÕP−1

ε
:= Pε(ÕPε) and hence it has sense to

consider
P−1
ε : ÕP−1

ε
⊂ R3 × TT −→ R3 × TT . (6.3.16)

Remark 6.3.2. The maps P+
ε , P−ε , Pε and P−1

ε are regular maps in their respective do-
mains, and are as smooth as the flows φ̃±±(t; z̃; ε) restricted to S±×S±×TT , respectively.
However, the maps κε, κ̄ε are also regular but when restricted to Õκε\Σ̃ and Õκ̄ε\Σ̃.

Remark 6.3.3. The formulas provided for the definition of the maps κε, κ̄ε and P±ε can
be applied beyond the domains Õκε, Õκ̄ε and ÕP±ε . However, the relation with the real

dyamics of the system is lost, as the respective flows φ̃±± are applied outside the domains
given in (6.2.14), where they are used as flows of system (6.2.14).

6.3.2 The domains of the maps

We now describe with a little more detail the sets Õκε , Õκ̄ε , ÕP±ε and ÕPε where have
defined the maps κε, κ̄ε, P

±
ε and Pε, respectively.

As described in the previous section, these are given by points whose trajectories first
impact with the switching surface given by u = 0 (Σ̃) rather than the one given by x = 0.
In general, this implies that such points have to be isolated enough from the switching
manifold R2 × Σ× TT .
Due to the form of the Hamiltonian X given in (6.2.5), for ε ≥ 0 small enough the flow
crosses the switching manifold x = 0 increasing x when y > 0 and decreasing x for y < 0.
Hence, the points in ÕP+

ε
, ÕP−ε and Õκε can be arbitrarily close to x = 0 when xy ≥ 0

(first and third quadrants of the x− y plane), even containing some part of the segment
x = 0, but not when xy < 0. Due to the backwards integration of the flow used in the
map κ̄ε, this is precisely the contrary for the set Õκ̄ε .
In any case, this implies that all sets ÕP+

ε
, ÕP−ε , Õκε and Õκ̄ε consist on two connected

components separated by the switching manifold given by x = 0, R2 × Σ× TT .
How these sets are separated from x = 0 depends on the time required to reach the

switching manifold u = 0. For ε = 0 the Hamiltonian H0 does not depend on s and
systems U and X are uncoupled. Hence this time, denoted as α±(v) in (6.3.10)-(6.3.11),
depends exclusively on the projection to the u − v plane of the initial condition and a
geometric description of the sets becomes much easier. We then look at these sets as
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ε-perturbations of the ones for ε = 0, which we describe below.

We first focus on ÕP+
0

(ε = 0), whose precise definition is given in (6.3.9).

Let (v, x, y, s) ∈ ÕP+
0

with s ∈ TT a free coordinate and v is such that 0 < v2

2
≤ c̄. This

guarantees that the flow crosses the surface Σ̃− and hence the image of (x, y, v, s) by the
map P+

0 exists. Let α+(v) be the time taken by the flow φ+
U (t; 0, v) to reach the section

Σ−, given in (6.3.10), and assume that it is an increasing function of v > 0. Hence,
v =
√

2c̄ leads to the largest time, t+c̄ := α+(
√

2c̄), required to reach the section Σ̃− and
thus represents the most restrictive situation to describe the projection to the plane x−y
of the set ÕP+

0
.

Consider any open neighbourhood V+ containing Q+ such that

φ+
X (t+c̄ ;V+) ⊂ S+.

Note that this set is not empty, as points arbitrarily close to Q+ take arbitrarily large
time by the flow φX to reach x = 0.
Then, the set

Σ+ × V+ × TT
which does not intersect with x = 0, is contained in ÕP+

0
∩ (Σ+ × S+ × TT ).

Also ÕP+
0
∩ (Σ+ × S+ × TT ) contains the set

Σ+ ×
(⋃

t≤0

φ+
X (t;V+) ∩ S+

)
× TT ,

which reaches x = 0 and contains Σ+ × (W s(Q+) ∩ S+)× TT .
Similarly, one can construct a tubular neighbourhood containing Σ+ × Q− × TT , Σ+ ×
W s(Q−)×TT and a piece of Σ+×W u(Q−)×TT which is contained in ÕP+

0
∩(Σ+ × S− × TT ).

This gives us a sketch of the two connected components that compound ÕP+
0

.

As mentioned above, we have considered the most restrictive situation given by v =
√

2c̄.
This means that, as long as v > 0 is decreased, the time needed to reach u = 0 decreases
and the tubular sets described above become thicker and larger.
A very similar description applies to ÕP−0 but arguing with α−(−

√
2c̄), where α−(−v) is

the time needed by the flow φ−U (t; 0,−v) to reach the section Σ+, and is given in (6.3.11).
Taking into account expression (6.3.13), set ÕP0 is given by the union of two smaller sets
contained in ÕP+

0
and ÕP−0 . Therefore, ÕP0 has four connected components located in

Σ+ × S+ × TT
Σ+ × S− × TT
Σ− × S+ × TT
Σ− × S− × TT .
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Regarding Õκ0 , it has a similar shape in the (x, y) coordinates as the one described
above. However, as we have defined κ0 to be the identity in Σ̃, the description given above
of the projection onto the x − y plane applies for Õκ0 for points outside Σ̃ (u 6= 0). For
points in Σ̃, the projection of Õκ0 onto the x− y plane becomes R2.

6.3.3 Impact sequence

Let (v, x, y, s) ∈ ÕPε and ε ≥ 0 small enough. Proceeding similarly as in [Hog89, GHS12],
we define the direct sequence of impacts associated with the section Σ̃, (viε, x

i
ε, y

i
ε, s

i
ε), as

(viε, x
i
ε, y

i
ε, s

i
ε) ={

P+
ε

(
vi−1
ε , xi−1

ε , yi−1
ε , si−1

ε

)
if
(
vi−1
ε , xi−1

ε , yi−1
ε , si−1

ε

)
∈ ÕP+

ε

P−ε
(
vi−1
ε , xi−1

ε , yi−1
ε , si−1

ε

)
if
(
vi−1
ε , xi−1

ε , yi−1
ε , si−1

ε

)
∈ ÕP−ε ,

(6.3.17)

with i ≥ 0 and (v0
ε , x

0
ε, y

0
ε , s

0
ε) = (v, x, y, s).

We also define the inverse sequence of impacts, if they, exist, as

(viε, x
i
ε, y

i
ε, s

i
ε) ={

(P+
ε )−1

(
vi+1
ε , xi+1

ε , yi+1
ε , si+1

ε

)
if
(
vi+1
ε , xi+1

ε , yi+1
ε , si+1

ε

)
∈ P+

ε (ÕP+
ε

)

(P−ε )−1
(
vi+1
ε , xi+1

ε , yi+1
ε , si+1

ε

)
if
(
vi+1
ε , xi+1

ε , yi+1
ε , si+1

ε

)
∈ P−ε (ÕP−ε ),

(6.3.18)

with i < 0.
In general, this is a finite sequence, and is defined up to the nth iterate such that

(vnε , x
n
ε , y

n
ε , s

n
ε ) /∈ ÕP+

ε
∪ ÕP−ε , n > 0

(vnε , x
n
ε , y

n
ε , s

n
ε ) /∈ P−ε

(
ÕP−ε

)
∪ P+

ε

(
ÕP+

ε

)
, n < 0

That is, we consider all the impacts with the switching surface given by u = 0 of the
trajectory associated with system (6.2.14) with initial condition (0, v, x, y, s) that are
previous to the first impact with the surface x = 0, both forwards and backwards in time.
When this occurs, then it is possible to extend the sequence by properly concatenating
the flow φ̃ after such crossing. However, if we allowed the switching manifold x = 0 to
be crossed between two elements of the impact sequence associated with u = 0, then
the elements (viε, x

i
ε, y

i
ε, s

i
ε) wouldn’t be given by the smooth maps P±ε . Moreover, as

the number of times that the switching manifold x = 0 would be crossed between the
impacts (viε, x

i
ε, y

i
ε, s

i
ε) and (vi+1

ε , xi+1
ε , yi+1

ε , si+1
ε ) is unknown and may arbitrarily large,

such transition wouldn’t be smooth, which is a property from we will later profit.
When ε = 0, of special interest will be the impact sequence associated with a point of

the type
(v, 0, yh, s) ∈ ÕPε
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fulfilling
U(0, v) = c, 0 < c < c̄,

and where (0, yh) = σup(0) is the intersection of the heteroclinic orbit of system X , defined
in (6.2.10)-(6.2.11), with the switching curve Σ. Hence, recalling that for the unperturbed
case system (6.2.14) consists on the two uncoupled systems (6.2.3) and (6.2.4) plus the
time variable s, the impact sequence of such a point is defined for all i ∈ Z, because, as
(0, yh) ∈ W s(Q+) ∩W u(Q−), the switching manifold x = 0 is never crossed again by the
orbit of (0, v, 0, yh, s), neither forwards nor backwards in time. Moreover, assuming v > 0,
and recalling that (v0

0, x
0
0, y

0
0, s

0
0) = (v, 0, yh, s), it has the following expression,

(vi0, x
i
0, y

i
0, s

i
0) ={ (
−v, σup

(
si−1

0 − s+ α+ (v)
)
, si−1

0 + α+ (v)
)

for i odd(
v, σup

(
si−1

0 − s+ α− (−v)
)
, si−1

0 + α− (−v)
)

for i even
(6.3.19)

if i > 0, and

(vi0, x
i
0, y

i
0, s

i
0) ={ (
−v, σup

(
si+1

0 − s− α− (−v)
)
, si+1

0 − α− (−v)
)

for i odd(
v, σup

(
si+1

0 − s− α+ (v)
)
, si+1

0 − α+ (v)
)

for i even
(6.3.20)

if i < 0, where σup(t) parametrizes the upper heteroclinic connection given in (6.2.10)-
(6.2.11), and α±(±v) are defined in (6.3.10) and (6.3.11).

Remark 6.3.4. If v < 0, then one just have to replace α± by α∓ in expressions (6.3.19)
and (6.3.20).

6.3.4 Explicit expressions for the flows

Although the general solution of system (6.2.14) was already described in §6.2, the impact
sequence defined in §6.3.3 permits us to provide explicit expressions for φ̃ as long as the
switching manifold x = 0 is not crossed. In this case, one has only to take into account
the crossings with the switching surface given by u = 0, Σ̃, which are determined by the
impact sequence.

For ε > 0 small enough, we first consider an initial condition z̃0 = (0, ω̃0), ω̃0 ∈
ÕPε , and the (direct and inverse) impact sequence (viε, x

i
ε, y

i
ε, s

i
ε) associated with ω̃0. As

mentioned above, this is in general a finite sequence. This is due to the fact that the flow
eventually crosses the switching manifold given by x = 0. In addition, it may also happen
that the flow does not cross u = 0 again; this would also make the impact sequence to be
finite.
Hence, we assume that there exist natural numbers −n2, n1 ∈ N restricting the length of
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the impact sequence, −n2 ≤ i ≤ n1. If this switching manifold is not crossed forwards or
backwards in time, then we consider n2 =∞ or n1 =∞, respectively.
For instance, assuming that z̃0 ∈ Σ+×S+×TT , the flow φ̃(t; z̃0; ε) such that φ̃(0; z̃0; ε) = z̃0

becomes

φ̃(t; z̃0; ε) =





φ̃++(t+ s0 − s2i
ε ; 0, v2i

ε , x
2i
ε , y

2i
ε , s

2i
ε ; ε)

if s2i
ε ≤ t+ s0 < s2i+1

ε

φ̃−+(t+ s0 − s2i+1
ε ; 0, v2i+1

ε , x2i+1
ε , y2i+1

ε , s2i+1
ε ; ε)

if s2i+1
ε ≤ t+ s0 < s2i+2

ε ,

(6.3.21)

with
−n2 ≤ 2i, 2i+ 1 ≤ n1.

Remark 6.3.5. In general, ω̃0 can belong to any of the four connected components of ÕPε

described in §6.3.2. Hence, there exist in fact four different expressions for the flow given
in (6.3.21). Assuming in general that z̃0 = (0, ω̃0) ∈ Σ±×S±×TT , these are obtained by
replacing the flow in the first branch of (6.3.21) by φ±±, and the one in the second one
by φ∓±.

If the initial condition z̃0 does not belong to the switching manifold Σ̃, we can make
use of the maps κε and κ̄ε in order to provide an explicit expression for the flow φ(t; z̃0; ε)
through the impact sequences of the points κε(z̃0) and/or κ̄ε(z̃0) as follows.
Let ε > 0 be small enough and let us assume that z̃0 ∈ Õκε ∩ Õκ̄ε and that the points

ω̃1 := κε(z̃0) (6.3.22)

ω̃2 := κ̄ε(z̃0) (6.3.23)

fulfill

ω̃1 ∈ ÕPε (6.3.24)

ω̃2 ∈ ÕP−1
ε
. (6.3.25)

We now use the impact sequences of the points ω̃1 and ω̃2 in order to give an explicit
expression of φ̃(t; z̃0; ε) for t ≥ 0 and t < 0, respectively. Using that

z̃1 = φ (Πs(ω̃1)− Πs(ω̃2); z̃2; ε) ,

where

z̃1 = (0, ω̃1)

z̃2 = (0, ω̃2),
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the impact sequences (vi,jε , x
i,j
ε , y

i,j
ε , s

i,j
ε ) associated with ω̃j, j = 1, 2, are related by

(
vi,1ε , x

i,1
ε , y

i,1
ε , s

i,1
ε

)
=
(
vi+1,2
ε , xi+1,2

ε , yi+1,2
ε , si+1,2

ε

)
.

Hence, it is possible to proceed with the direct and inverse sequence associated with only
one point. However, as we will have to use a similar trick in §6.4.1, we prefer to use here
the direct and inverse impact sequences of ω̃1 and ω̃2, defined in (6.3.17) and (6.3.18),
respectively. Note that conditions (6.3.24) and (6.3.25) ensure us that these are not empty.

Let (vi,1ε , x
i,1
ε , y

i,1
ε , s

i,1
ε ), 0 ≤ i < n1 be the impact sequence associated with z̃1, where

n1 > 0 is given by the last element of the sequence before the section x = 0 is crossed. If
it does not occur, then we consider n1 =∞.
Let also (vi,2ε , x

i,2
ε , y

i,2
ε , s

i,2
ε ), n2 < i ≤ 0, be the impact sequence associated with z̃2, where

n2 < 0 is given by the last element of the sequence (backwards in time) before the section
x = 0 is crossed. If it does not exist, we then consider n2 = −∞.

As an example, let us suppose that z̃0 ∈ S+×S+×TT and therefore z̃1 ∈ Σ−×S+×TT
and z̃2 ∈ Σ+×S+×TT . Then, for t ∈ [sn2,2

ε −s0, s
n1,1
ε −s0), we can write the flow φ̃(t; z̃0; ε),

fulfilling φ̃(0; z̃0; ε) = z̃0, as

φ̃(t; z̃0; ε) =





φ̃(t+ s0 − s0,2
ε ; z̃2; ε) if sn2,2

ε ≤ t+ s0 < s0,2
ε

φ̃++(t; z̃0; ε) if s0,2
ε ≤ t+ s0 < s0,1

ε

φ̃(t+ s0 − s0,1
ε ; z̃1; ε) if s0,1

ε ≤ t+ s0 < sn1,1
ε ,

(6.3.26)

where φ̃++ is the smooth flow associated with the respective domain in Eq. (6.2.14) and
φ̃(t; z̃i; ε) is given in (6.3.21).
Similarly, if z̃0 ∈ S± × S± × TT , the explicit expression for φ̃(t; z̃0; ε) becomes the same
as in (6.3.26) but replacing φ̃++ with φ̃±±.

Note that this definition of φ̃ is defined only as long as the impact manifold given by
x = 0 is not crossed. We now extend it for initial conditions at x = 0. Hence, let us
consider initial conditions of the form

z̃0 = (u0, v0, 0, y0, s0), U(u0, v0) < c̄, y0 > 0. (6.3.27)

Such a type of initial conditions will play an important role in §6.4.
In this case, as z̃0 belongs to the switching manifold given by x = 0, by using the im-
pact sequences associated with the points z̃i given in (6.3.22)-(6.3.23), expression (6.3.26)
provides us an explicit expression for the flow φ(t; z̃0; ε) allowing it to cross the switching
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manifold given by x = 0. For instance, assuming z̃0 ∈ S+×Σ−×TT (u0 > 0), it becomes

φ̃(t; z̃; ε) =





φ̃(t+ s0 − s0,2
ε ; z̃2; ε) if sn2,2

ε ≤ t+ s0 < s0,2
ε

φ̃+−(t; z̃0; ε) if s0,2
ε ≤ t+ s0 < s0

φ̃++(t; z̃0; ε) if s0 ≤ t+ s0 < s0,1
ε

φ̃(t+ s0 − s0,1
ε ; z̃1; ε) if s0,1

ε ≤ t+ s0 < sn1,1
ε .

(6.3.28)

As before, depending on the signs of u0 and y0, z̃0 ∈ S± × Σ± × TT and the respective
expression is obtained by replacing in (6.3.28) φ̃++ by φ̃±± and φ̃+− by φ̃±∓.

In general, the impact sequences associated with the points z̃1 and z̃2 will be finite
sequences (n1 <∞ and n2 > −∞).
For ε = 0, the unique points for which the expression of the flow given in (6.3.28) is valid
for any t ∈ R are the heteroclinic points z̃0 = (u0, v0, 0, yh, s0), with U(u0, v0) < c̄ and
s0 ∈ TT . Then z̃1 ∈ R2 ×W s(Q+) × TT and z̃2 ∈ R2 ×W u(Q−) × TT and the iterates
of their associated impact sequences are all defined, forwards and backwards in time,
respectively.
In this case, if for instance u0 > 0, then v0,2

0 > 0 and v0,1
0 < 0 and Eq. (6.3.28) takes the

form

φ̃(t; 0, v0, 0, yh, s0; 0) =




(
φ+
U (t+ s0 − s2j,2

0 ; 0, v2j,2
0 ), σup(t), s0 + t

)
if s2j,2

0 ≤ t+ s0 < s2j+1,2
0(

φ−U (t+ s0 − s2j+1,2
0 ; 0, v2j+1,2

0 ), σup(t), s0 + t
)

if s2j+1,1
0 ≤ t+ s0 < s2j+2

0(
φ+
U (t+ s0 − s0,2

0 ; 0, v0,2
0 ), σup(t), s0 + t

)

=
(
φ+
U (t;u0, v0), σup(t), s0 + t

)
if s0,2

0 ≤ t+ s0 < s0,1
0(

φ−U (t+ s0 − s2i,1
0 ; 0, v2i,1

0 ), σup(t), s0 + t
)

if s2i,1
0 ≤ t+ s0 < s2i+1,1

0(
φ+
U (t+ s0 − s2i+1,1

0 ; 0, v2i+1,1
0 ), σup(t), s0 + t

)
if s2i+1,1

0 ≤ t+ s0 < s2i+2
0 .

(6.3.29)

with

0 ≤ 2i, 2i+ 1 <∞
−∞ < 2j, 2j + 1 ≤ 0.

Analagously if u0 < 0.

6.3.5 Perturbative formulas

As we will see in §6.3.6, in the unperturbed case, the existence of heteroclinic manifolds
in system (6.2.14) will be given by the heteroclinic manifold W u(Q−) = W s(Q+). As this
heteroclinic will intersect transversally the switching manifold given by x = 0, so will also
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the stable and unstable manifolds that we will show that exist for ε > 0. Hence, in §6.4.1,
in order to find suitable heteroclinic connections, we will be interested on measuring the
distance between points belonging to stable and unstable manifolds at their intersection
with the switching surface x = 0. As we will show in §6.4.1, the heteroclinic connections
will be found by using Melnikov-like arguments, involving the integral of Poisson brackets
between the unperturbed and perturbed Hamiltonians along trajectories to measure such
distances.
Taking into account that these trajectories will be given by initial conditions at the
switching manifold x = 0, and hence by points of the form (6.3.27),

z̃0 = (u0, v0, 0, y0, s0), U(u0, v0) < c̄, y0 > 0,

the integrals

∫ tf

ti

{X, h}
(
φ̃(t; z̃0; ε)

)
dt (6.3.30)

∫ t̄f

t̄i

{U, h}
(
φ̃(t; z̃0; ε)

)
dt, (6.3.31)

for some suitable ti, tf , t̄i, t̄f , have to be considered as piecewise integrals regarding
the expression of the flow given in (6.3.28). These pieces are separated by the intervals
[si,kε , s

i+1,k
ε ), k = 1, 2, given by the impact sequences associated with the points ω̃1 = κε(z̃0)

and ω̃2 = κ̄ε(z̃0). Note that, at each interval, one does not only have to distinguish between
the flows φ±±, but also between the integrands {X±, h} and {U±, h}.
For the case of the Poisson bracket {X, h}, by the definition of the impact sequence, the
impact manifold x = 0 is only crossed for t = 0, and the integral (6.3.30) can be separated
in two piecewise integrals of as follows

∫ si,1ε

sj,2ε

{X, h} (φ (t; z̃0; ε)) dt =

∫ 0

sj,2ε

{
X−, h

}
(φ (t; z̃0; ε)) dt

+

∫ si,1ε

0

{
X+, h

}
(φ (t; z̃0; ε)) dt.

Let us emphasize that in both integrals the flow crosses the switching manifold given by
u = 0 at every impact time sl,kε . Therefore, both integrals consist on a sum of j integrals
over φ̃−± and i integrals over φ̃+±.

For the case of {U, h}, one has to consider that the switching manifold u = 0 is crossed
at every impact. Hence, not only the flow but the integrand changes between {U+, h}
and {U−, h} at each integrating interval.

The following lemma provides us formulas for the unperturbed Hamiltonian X evalu-
ated at points at the switching manifold Σ̃. These will be used later on §6.4.1 to obtain
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expressions for the distance between points in the switching manifold given by x = 0
through the projection by κε and κ̄ε. As remarked below, in Remark 6.3.7, similar for-
mulas can be obtained for the Hamiltonian U .

Lemma 6.3.1. Let us consider a point

ω̃ ∈ ÕPε ∩ ÕP−1
ε

and z̃ = (0, ω̃) in the extended phase space, and let (viε, x
i
ε, y

i
ε, s

i
ε) (n2 ≤ i ≤ n1, n2 < 0

and n1 > 0) be it’s (direct and inverse) impact sequence. Then, it holds that

X(ω̃) := X(Πx(ω̃),Πy(ω̃))

= ε

∫ 0

siε−s0ε
{X, h}

(
φ̃(t; z̃; ε)

)
dt+X(xi0, y

i
0)

for any n2 ≤ i ≤ n1.

Proof. By a very straightforward piecewise-application of the fundamental theorem of
calculus.

Remark 6.3.6. The integral given in Lemma 6.3.1 is a piecewise integral separated by
the intervals given by the impact sequence of ω̃ (or z̃) as in Eq. (6.3.21). However,
the integrand {X, h} is kept constant, and is set to {X+, h} or {X−, h} depending on
which component of the sets ÕP−1

ε
and ÕPε the point ω̃ belongs to. As an example, if

ω̃ ∈ [v1, v2]× S+ × TT (and therefore z̃ ∈ Σ+ × S+ × TT ), the flow with initial condition
ω̃ is given in (6.3.21). Then the expression provided by Lemma 6.3.1 becomes

X(ω̃) := X−(ω̃)

= ε
k=0∑

i≤2k−1

∫ s2kε −s0ε

s2k−1
ε −s0ε

{
X−, h

}(
φ̃−+(t− s2k−1

ε + s0
ε; (0, ω̃2k−1); ε)

)
dt

+ ε

k=−1∑

i≤2k

∫ s2k+1
ε −s0ε

s2kε −s0ε

{
X−, h

}(
φ̃++(t− s2k

ε + s0
ε; (0, ω̃2k); ε)

)
dt+X(ω̃i),

for n2 ≤ i ≤ n1.

Remark 6.3.7. A similar expression can be derived for U(ω̃), which will be used in §6.4.2
to derive properties of the scattering map. However, by contrast to the case of the Hamil-
tonian X, the integrand {U, h} changes as the flow between {U+, h} and {U−, h} at every
interval conforming the integral given in Lemma 6.3.1.
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6.3.6 Invariant manifolds and their persistence

6.3.6.1 Unperturbed case in the extended phase space

Let us first focus on the invariant objects of system (6.2.14), relevant for our study,
when ε = 0. As we work in the extended phase space to deal with the non-autonomous
perturbation, we first embed the invariant objects described in 6.2.1.
The cross products of the hyperbolic critical points Q± and the periodic orbits Λc give
place to two families of invariant 2-dimensional tori of the form

T̃ +
c = Λc ×Q+ × TT ={

(u, v, x, y, s) |U(u, v) = c, (x, y) = Q+, s ∈ TT
}

T̃ −c = Λc ×Q− × TT ={
(u, v, x, y, s) |U (u, v) = c, (x, y) = Q−, s ∈ TT

}
,

(6.3.32)

with 0 < c ≤ c̄. These tori are only continuous manifolds, because of the singularity of
the Hamiltonian U at u = 0. See Fig. 6.4.
Let us parametrize T̃c by

T̃ ±c =
{

(φU(θα(v); 0, v), Q±, s), θ ∈ T, v ∈ R, U(0, v) = c, s ∈ TT
}
, (6.3.33)

where α(v) is the period of the periodic orbit Λc given in Eq. (6.3.15), T = R\Z is the
usual circle and φU is the flow associated with system (6.2.4). Then the flow φ̃ restricted
to these tori becomes

φ̃(t;φU(θα(v); 0, v), Q±, s; 0)

=

(
φU

((
θ +

t

α(v)

)
α(v); 0, v

)
, Q±, s+ t; 0

)
, ∀t ∈ R,

and T̃c is hence invariant.
Note that these tori have two different frequencies, 1

α(v)
for θ and 1 for s. In order

to normalize, one could also consider a new parameter, ṙ = 1
T

, such that (θ, r) ∈ T2

with T = R\Z the usual circle, with frequencies ( 1
α(v)

, 1
T

). We use however the original
coordinate s.

For each of these invariant tori there exist 3-dimensional continuous manifolds

W s(T̃ +
c ) = W u(T̃ −c )

= Λc ×W s(Q−)× TT = Λc ×W u(Q+)× TT
= {(φU(θα(v); 0, v), σup(ξ), s), |U(0, v) = c, θ ∈ T, ξ ∈ (−∞,∞), s ∈ TT} ,

where σup(ξ), given in (6.2.10)-(6.2.11), parametrizes the upper heteroclinic orbit of sys-
tem X (see Fig. 6.4). These manifolds are invariant and the flow φ̃ restricted to them can
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Λ̃− Λ̃+

T̃ −
c T̃ +

c

U
(u
,v
)
=
c

Q− Q+

ΛcΛc

TT

Λc×γup×T︷ ︸︸ ︷
W u(T̃c−) = W s(T̃ +

c )

c = c2

c = c1

Figure 6.4: Scheme of the manifolds Λ̃±, the tori T̃ ±c and their invariant manifolds.
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be written as

φ̃(t;φU(θα(v); 0, v), σup(ξ), s; 0)

=

(
φU

((
θ +

t

α(v)

)
α(v); 0, v

)
, σup(ξ + t), s+ t

)
, ∀t ∈ R,

and they are hence invariant. Moreover, for any z̃ = (φU(θα(v); 0, v), σup(ξ), s) ∈ W s(T̃ +
c ) =

W u(T̃ −c ), there exists two points

z̃± =
(
φU(θα(v); 0, v), Q±, s

)
∈ T̃ ±c

such that

lim
t→±∞

∣∣∣φ̃(t; z̃; 0)− φ̃(t; z̃±; 0)
∣∣∣ = lim

t→±∞

(
0, 0, σup(ξ + t)−Q±, 0

)
= 0.

In addition, as the points Q± are hyperbolic for the flows φ±X , there exist then positive
constants K± and λ± such that

∣∣φ(t; z̃; 0)− φ(t; z̃±; 0)
∣∣ < K±e−λ

±|t|, t→ ±∞. (6.3.34)

Note that ±λ+ and ±λ− are the eigenvalues of DX+ and DX−, respectively, which are
opposite one to each other because φ±X are Hamiltonian flows.
Although W u,s(T̃ ±c ) are just continuous manifolds, we will call them the stable and un-
stable manifolds of T̃ ±c . As they coincide, the 3-dimensional continuous manifold

γ̃up
c = W s(T̃ +

c ) = W u(T̃ −c )

will be a 2-dimensional heteroclinic manifold between the tori T̃ −c and T̃ +
c .

Analogously, the lower heteroclinic connection mentioned in condition C.2 leads also to
similar heteroclinic manifolds between the tori T̃ ±c . However, as it is enough for our pur-
poses, we will focus from now on only on the heteroclinic manifold γ̃up

c .

Following [DdlLS00], considering all the tori T̃ +
c and T̃ −c together we end up with two

3-dimensional continuous manifolds

Λ̃+ =
⋃

c∈[c1,c2]

T̃ +
c =

⋃

c∈[c1,c2]

Q+ × Λc × TT

=
{

(u, v, x, y, s) , c1 ≤ U(u, v) ≤ c2, (x, y) = Q+, s ∈ TT
}

=
{(
φU(θα(v); 0, v), Q+, s

)
, θ ∈ T, c1 ≤ U(0, v) ≤ c2, s ∈ TT

}

Λ̃− =
⋃

c∈[c1,c2]

T̃ −c =
⋃

c∈[c1,c2]

Q− × Λc × TT

=
{

(u, v, x, y, s) , c1 ≤ U(u, v) ≤ c2, (x, y) = Q−, s ∈ TT
}

=
{(
φU(θα(v); 0, v), Q−, s

)
, θ ∈ T, c1 ≤ U(0, v) ≤ c2, s ∈ TT

}

(6.3.35)
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with 0 < c1 < c2 < c̄, schematically shown in Fig. 6.4.
These manifolds have also 4-dimensional stable and unstable continuous manifolds that
will consist on

W s(Λ̃+) = W u(Λ̃−) =
⋃

c∈[c1,c2]

W s(T̃ +
c ) =

⋃

c∈[c1,c2]

W u(T̃ −c )

= {(φU(θα(v); 0, v), σup(ξ), s) , θ ∈ T, c1 ≤ U(0, v) ≤ c2, ξ ∈ R, s ∈ TT} (6.3.36)

where σup(ξ), given in (6.2.10)-(6.2.11), parametrizes the upper unperturbed heterocinic
connections of system (6.2.3).
As they coincide, this will define a 4-dimensional heteroclinic continuous manifold between
the manifolds Λ̃±, to which we will refer as

γ̃up := W s(Λ̃+) = W u(Λ̃−).

It will be convenient to write the manifolds Λ̃± in terms of a reference manifold N
(see [DdlLS08]) as follows. Let

N = {(θ, v, s) ∈ T× [v1, v2]× TT} (6.3.37)

where ci = U(0, vi), and consider two homeomorphisms

F±0 : N −→ Λ̃±

(θ, v, s) 7−→ (φU(θα(v); 0, v), Q±, s).
(6.3.38)

Note that F±0 are in fact diffeomorphisms as long as θ ∈
(

0, α
+(v)
α(v)

)
∪
(
α+(v)
α(v)

, 1
)

as

φU(θα(v); 0, v) hits the switching manifold given by u = 0 for θ = 0, θ = α+(v)
α(v)

and
θ = 1.
Hence the continuous manifolds Λ̃± are given by Λ̃± = F±0 (N). This will later allow us to
identify points on the perturbed manifolds Λ̃±ε in terms of the same coordinates (θ, v, s)
if ε > 0 is small enough.

Due to the singularity given at θ = α+(v)
α(v)

, these manifolds are only C0 manifolds, and,
hence, their tangent space is not defined at u = 0.

The homeomorphisms F±0 induce flows on the manifold N which are topologically
conjugated to φ̃ restricted to the manifolds Λ̃±. This induced flow is in fact the rotation

θ̇ =
1

α(v)

ṡ = 1.
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6.3.6.2 Invariant manifolds for the unperturbed impact map

The fact that the manifolds Λ̃± are only continuous manifolds will prevent us to ap-
ply classical perturbation theory for hyperbolic manifolds ([Fen72, Fen74, Fen77, HPS77,
DdlLS00]) to study their persistence for ε > 0.
In the smooth case, the usual tool to proof such persistence after a non-autonomous peri-
odic perturbation is the stroboscopic Poincaré map, which integrates the system during a
certain time T , the period of the perturbation. However, in our case, such map becomes
unwieldy because, for a given time, the number of times that the switching manifold can
be crossed is unknown and can be even arbitrarily large. Instead, we will consider the
Poincaré impact map defined in §6.3.1, which is a smooth map as regular as the flows
φ̃±± restricted to their respective domains.
We first describe the invariant objects introduced above for the impact map restricted to
Σ̃+ when ε = 0.
As we said in §6.3.1, we will identify the switching manifold Σ̃+ with the set R2 ×
([−v2,−v1] ∪ [v1, v2]) × TT and omit the repetition of the coordinate u = 0 for points
in Σ̃. We then consider the impact map

P0 : ÕP0 ∩ {(v, x, y, s), | v > 0} −→ R3 × TT .

Taking into account that

P0(v,Q±, s) = (v,Q±, s+ α(v)), (6.3.39)

α(v) defined in (6.3.15), and letting U (0, v) = c, the invariant tori (6.3.32) become smooth
invariant curves, that is, Λ̃±c ∩ Σ̃, become

C̃+
c = {v} ×Q+ × TT

=
{

(v, x, y, s) ∈ R3 × TT |U(0, v) = c, (x, y) = Q+
}

(6.3.40)

C̃−c = {v} ×Q− × TT
=
{

(v, x, y, s) ∈ R3 × TT |U(0, v) = c, (x, y) = Q−
}
, (6.3.41)

with 0 < c ≤ c̄.
For those values of c such that mα(v) = nT , for some natural numbers n and m, the
curves C̃±c are filled by periodic points. The rest are formed by points whose trajectories
are dense in C̃±c .

For each of these curves there exist 2-dimensional smooth manifolds

W s(C̃+
c ) = W u(C̃−c )

{(v, σup(ξ), s) , U(0, v) = c, ξ ∈ R, s ∈ TT}
which are invariant by P0:

P0(v, σup(ξ), s) = (v, σup(ξ + α(v)), s+ α(v))) ∈ W u(C̃−c ) = W s(C̃+
c ).
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Moreover, due to the hyperbolicity of the points Q± (see (6.3.34)), it comes that, for any
ω̃ = (v, σup(ξ), s) ∈ W u(C̃−c ) = W s(C̃+

c ), there exist ω̃± = (v,Q±, s) ∈ C̃±c such that

|P n
0 (ω̃)− P n

0 (ω̃±)| =
∣∣(0, σup (ξ + nα (v))−Q±, 0

)∣∣ < K̃±(λ̂±)|n|, n→ ±∞, (6.3.42)

where K̃± = K±e−λ
±ξ, 0 < λ̂± = e−λ

±α(v) < 1 and λ±, K± are defined in (6.3.34).

Proceeding similarly as with the flow, we now consider the union by c of all the curves
C̃±c which become the smooth cylinders

Γ̃+ =
⋃

c∈[c1,c2]

C̃+
c =

{
(v,Q+, s) | v1 < v < v2, s ∈ TT

}

Γ̃− =
⋃

c∈[c1,c2]

C̃−c =
{

(v,Q−, s) | v1 < v < v2, s ∈ TT
}
,

(6.3.43)

with 0 < ci ≤ c̄ and ci = U(0, vi), i = 1, 2, which are invariant by P0. Let us note that
the manifolds Γ̃± correspond to the intersection

Λ̃± ∩ Σ̃+ = {0} × Γ̃±.

As we did before for the flow, it will be convenient to write the manifolds Γ̃± in terms of
a reference manifold. Let

L = {(v, s) ∈ R× TT , v1 ≤ v ≤ v2} (6.3.44)

and consider the two diffeormphisms

G±0 : L −→ Γ̃±

(v, s) 7−→ (v,Q±, s).

Then, the smooth manifolds Γ̃± are given by G±0 (L). Moreover, for any (v, s) ∈ L

P0(G±0 (v, s)) = G±0 (v, s+ α(v)).

This induces a map
p0 : L −→ L

(v, s) 7−→ (v, s+ α(v)),
(6.3.45)

which is a twist map on the manifolds Γ̃± and describes the dynamics of P±0 restricted to
both those:

P0 ◦G±0 (v, s) = P0(v,Q±, s) = (v,Q±, s+ α(v))

= G±0 (v, s+ α(v)) = G±0 ◦ p0(v, s).



134 6.3. SOME NOTATION AND PROPERTIES

We now argue that Γ̃± are manifolds with boundaries which are normally hyperbolic
and locally invariant for the unperturbed impact map P0.
Provided that Γ̃± are smooth manifolds in R3×TT , as smooth as the flows φ̃±± restricted
to their respective domains, for every ω̃ ∈ Γ̃± we can consider the tangent spaces Tω̃Γ̃±.
From expressions (6.3.43), these become

Tω̃Γ̃± = {(1, 0, 0, 0), (0, 0, 0, 1)} .
Let X± be the fields associated with the Hamiltonians X± and given in (6.2.3). Let

w±s ∈ R2 and w±u ∈ R2 be the eigenvectors of DX± at Q±, associated with the eigenvalues
−λ± and λ±, respectively.
Using expression (6.3.39) for the unperturbed impact map, the Jacobian matrix of P0(v, x, y, s)
evaluated at Γ̃±0 becomes

DP0(v,Q±, s) =




1 0 0 0
0

eDX
±(Q±)α(v) 0

0 0
α′(v) 0 0 1


 .

Given ω̃ ∈ Γ̃±, we can consider the splitting for the tangent space Tω̃(R3 × TT )

Tω̃
(
R3 × TT

)
= Es

ω̃ ⊕ Eu
ω̃ ⊕ Tω̃(Γ̃±),

where

Es
ω̃ =< 0, w±s , 0 >

Eu
ω̃ =< 0, w±u , 0 >

are the eigenspaces generated by the vectors w+
s and w+

u .
Taking into account that Γ̃± are compact manifolds with boundaries given by v = v1 and
v = v2, there exist constants µ̄ > 1, 0 < λ̄± < 1 such that, for all ω̃ ∈ Γ̃±

w ∈ Es
ω̃ ⇐⇒ |DP n

0 (ω̃)w| ≤ K±(λ̄±)n|w|, n ≥ 0
w ∈ Eu

ω̃ ⇐⇒ |DP n
0 (ω̃)w| ≤ K±(λ̄±)−n|w|, n ≤ 0

w ∈ Tω̃Γ̃± ⇐⇒ |DP n
0 (ω̃)w| ≤ K±(µ̄±)|n||w|, n ∈ Z.

(6.3.46)

Assuming that α(v) is an increasing function of v, we can take

λ̄± = e−α(v1)λ± , (6.3.47)

and µ̄ any constant satisfying µ̄ > 1.
Hence, Γ̃± are C∞ (as regular as the flows) normally hyperbolic manifolds for the unper-
turbed impact map P0, with stable and unstable invariant manifolds

W u(Γ̃−) = W s(Γ̃+) =
⋃

c∈[c1,c2]

W u(C̃−c ) =
⋃

c∈[c1,c2]

W s(C̃+
c )

= {v, (σup(ξ), s), v1 ≤ v ≤ v2, ξ ∈ R, s ∈ TT} .
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It will also be convinient to introduce the following parametrization of the invariant
manifolds W s/u(Γ̃+/−). Using σdown, similar ones can be obtained for W u/s(Γ̃+/−). Let

Es,u = {(v, s, η) ∈ L× [0, 1]}
be a bundle on L. We then define

G
s/u
0 : Es/u −→ W s/u(Γ̃+/−)

(v, s, η) 7−→
(
v, σup(−/+ ln η

λ+/− ), s
)
.

(6.3.48)

As σup(ξ)→ Q± as ξ → ±∞, we include η = 0 in the domains and define

G
s/u
0 (v, s, 0) = G

+/−
0 (v, s).

The diffeomorphisms Gs,u
0 induce dynamics on W s/u(Γ̃+/−) in terms of the parameters

(v, s, η). To simplify the notation, we proceed with W s(Γ̃+). Let ω̃s = Gs
0(v, s, η). Then,

P0(Gs
0(v, s, η)) = P0(ω̃s) = (v, σup(− ln η

λ+
+ α(v)), s+ α(v))

= (v, σup(− ln(ηλ̂+)

λ+
), s+ α(v)) = Gs

0(v, s+ α(v), ηλ̂+),

where λ̂+ = e−λ
+α(v) is defined in (6.3.42).

Hence, the dynamics induced in Es is given by

ps0 : Es −→ Es

(v, s, η) 7−→ (v, s+ α(v), ηλ̂+),

so that
P0 ◦Gs

0 = Gs
0 ◦ ps0,

and ps0 also inheres the hyperbolic nature of the map P0,
∣∣∣
(
(p+

0 )n(v, s), 0
)
− (ps0)n(v, s, η)

∣∣∣

=
∣∣∣(0, 0,−ηλ̂+)

∣∣∣ < η(λ̄+)n.

6.3.6.3 Perturbed case

Let us now wonder about the persistence of the invariant manifolds introduced in the
previous section when ε > 0 is small. We first focus on the normally hyperbolic manifolds,
Γ̃±, for the map P0.
As mentioned in Remark 6.3.2, the impact map Pε is as regular as the flows φ̃±± restricted
to S±×S±×TT . Thus, the persistence of the normally hyperbolic manifolds Γ̃± for ε > 0
comes from the theory of normally hyperbolic manifolds ([HP70, Fen72, Fen74, HPS77,
DdlLS08]). In particular, we apply the main result given in [HP70] and reformulated
in [DdlLS08] which we repeat here for commodity in terms of our notation and needs.
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Theorem 6.3.1. Let Pε : ÕPε ⊂ R3×TT → R3×TT be a C∞ family of diffeomorphisms.
Assume that Γ̃ ⊂ R3×TT is a normally hyperbolic invariant manifold for P0 with rates λ̂

and µ̂ as in (6.3.46). Then for any l < | log λ̂|
log µ̂

, there exists an ε0 > 0 such that for |ε| < ε0

there exist C l−1 families

Gε : L −→ R3 × TT
pε : L −→ L

Gs,u
ε : Es,u −→ R3 × TT
ps,uε : Es,u −→ Es,u,

where Es,u = L× [0, 1] are bundles over L, satisfying

Pε ◦Gε = Gε ◦ pε (6.3.49)

Pε ◦Gs,u
ε = Gs,u

ε ◦ ps,uε (6.3.50)

and, for any (v, s) ∈ L,

Gs,u
ε ((v, s), 0) = Gε(v, s) (6.3.51)

ps,uε ((v, s), 0) = pε(v, s) (6.3.52)

D2G
s,u
ε ((v, s), 0)Es,u

(v,s) = Es,u
Gε(v,s). (6.3.53)

Moreover, there exists an open set U ⊃ G0(L) = Γ̃ in such a way that the set Γ̃ε := Gε(L)
is a normally hyperbolic invariant manifold, verifies

Γ̃ε =
⋂

n∈Z
P n
ε (U) ∩ U,

and has stable and unstable manifolds given by

W s,u(Γ̃ε) = Gs,u
ε (Es,u).

Moreover, if ω̃ = Gε(v, s) ∈ Γ̃ε, then

W s,u(ω̃) =
⋃

η∈[0,1]

Gs,u
ε (v, s, η).

Condition (6.3.49) gives us the persistence for ε > 0 small enough of the normally
hyperbolic invariant manifolds Γ̃±, which become Γ̃±ε , which are normally hyperbolic
invariant manifolds for the impact map Pε in (6.3.13).
In general, the Theorem of persistence of normally hyperbolic manifolds only gives locally
invariance for the perturbed manifold. Nevertheless, as shown in (6.3.45), the unperturbed
map is a twist map when restricted to Γ̃±, some of the curves v = ct which foliated it
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(those such that α(v) is not congruent with the period T of the perturbation) are preserved
by the classical twist theorem. These invariant curves provide invariant boundaries for
the perturbed manifolds Γ̃±ε , and hence Γ̃±ε are compact and invariant. In addition, this
compactness makes the manifolds Γ̃±ε given by the diffeomorphisms G±ε be unique.
The diffeomorphisms Gs,u

ε provide formulas for the (local) stable and unstable manifolds
of Γ̃±ε , W s,u

loc (Γ̃±ε ), in terms of the bundle eigenspaces Es,u. More precisely, the points of
the stable and unstable manifolds of Γ̃+

ε (similarly for Γ̃−ε ) are of the form

Gs,u
ε ((v, s) , η) ,

where ((v, s) , η) is a point of the bundle

((v, s) , η) ∈ Eu,s ⊂ L× [0, 1] ⊂ R× TT × R.

Note that these maps Gu,s
ε refer here to the invariant manifolds associated with Γ̃+

ε . To
avoid too lengthy notation, we have omitted the superscript + in these maps. Similar
ones would parametrize the stable and unstable manifolds of Γ̃−ε .
In addition, the regularity of the maps with respect to the perturbation parameter ε
ensures that the perturbed objects are ε-close to the unperturbed ones.

Finally, conditions (6.3.51)-(6.3.53) relate points at the normally hyperbolic manifold
Γ̃+
ε with points at its stable and unstable manifolds as follows.

Let ω̃+ = G+
ε (v, s) and ω̃s,u = Gs,u

ε (v, s, η), with (v, s) ∈ L and η ∈ [0, 1]; then,

|P n
ε (ω̃s/u)− P n

ε (ω̃+)| = |P n
ε ◦Gs,u

ε (v, s, η)− P n
ε ◦Gε(v, s)|

= |Gs,u
ε ◦ (ps,uε (v, s, η))n −Gε (pnε (v, s)) |

< K+
(
λ̄+O(ε)

)n → 0, n→ +/−∞,
where 0 < λ̄+ < 1 is the constant given in (6.3.46).
The parametrization of the normally hyperbolic manifolds Γ̃±ε given by Theorem 6.3.1 are
not unique. For our convenience, we choose from now the parametrizations G±ε to be the
identity in the v and s coordinates,

Πv,s

(
G±ε
)

= Id, (6.3.54)

that is,
G±ε (v, s) = (v, g±ε (v, s), s).

Finally, note that, when ε = 0, these maps coincide with the ones defined in §6.3.6.
Therefore,

g±0 (v, s) = Q±.

We now wonder about the existence of equivalent manifolds to Γ̃±ε for the flow φ̃. More
precisely, we are interested in obtaining the perturbed version of the normally hyperbolic
manifolds Λ̃± in terms of the reference manifold N given in (6.3.37).
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Proposition 6.3.1. Under the hypothesis of Theorem 6.3.1, there exist continuous maps

F±ε : N −→ R4 × TT ,

that are Lipschitz in ε, such that the C0 manifolds

Λ̃±ε = F±ε (N)

are invariant under φ̃ and ε-close to Λ̃±0 .
Moreover, there exist C0 manifolds W s,u(Λ̃±ε ), ε-close to W s,u(Λ̃±0 ), such that, for any

z̃s/u = (zs/u, ss,u) ∈ W s/u(Λ̃
+/−
ε ) there exists z̃+/− = (z+/−, s+/−) ∈ Λ̃

+/−
ε satisfying ss/u =

s+/− and
|φ(t; z̃s/u; ε)− φ(t; z̃+/−; ε)| < K+/−e−λ

+/−|t|, t→ +/−∞, (6.3.55)

where K+/− > 0 and λ+/− > 0 are given in (6.3.34). Similarly for z̃u/s ∈ W u/s(Λ̃
+/−
ε ).

Proof. We first obtain the maps

F±ε : N −→ R4 × TT

which provide the invariant manifolds Λ̃±ε .
For each (θ, v, s) ∈ N , we consider G±ε (v, s) = ω̃± ∈ Γ̃±ε which, recalling the assumption
stated in (6.3.54), are of the form

ω̃± = (v, g±ε (v, s), s).

Calling

ω̃±1 = (ω±1 , s
±
1 ) = Pε(ω̃

±)

z̃± = (0, ω̃±) ∈ {0} × Γ̃±ε ⊂ Σ̃,

we then consider the maps

F±ε (θ, v, s) = φ̃
((
s±1 − s

)
θ; z̃±; ε

)
(6.3.56)

= φ̃
(
(s1 − s) θ; 0, v, g±ε (v, s), s

)
, θ ∈ [0, 1], (6.3.57)

which are a smooth maps as long as the flow does not hit u = 0, which occurs at

θ = 0, θ =
Πs(P

+
ε (ω̃±))− s
s±1 − s

, θ = 1.

The maps F±ε fulfill

F±ε (0, v, s) = φ̃(0; z̃±; ε) =
(
0, ω̃±

)
∈ {0} × Γ̃±ε
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and

F±ε (1, v, s) = φ̃(s±1 − s; z̃±; ε) =
(
0, Pε(ω̃

±)
)

=
(
0, Pε ◦G±ε (v, s)

)
=
(
0, G±ε (p±ε (v, s))

)
∈ {0} × Γ̃±ε . (6.3.58)

Note that, when ε = 0, z̃± = (0, ω̃±) = (0, G±0 (v, s)) = (0, v, Q±, s) ∈ Γ̃±0 and (s±1 −s) =
α(v). Therefore,

F±0 (θ, v, s) = φ̃
(
α(v)θ; z̃±; 0

)
=
(
φU(θα(v); 0, v), Q±, s

)

and, in the unperturbed case, these parametrizations coincide with F±0 defined in (6.3.38).
This allows us to obtain the 3-dimensional continuous manifolds

Λ̃±ε = F±ε (N), (6.3.59)

which, as we argue below, are invariant by the flow φ̃(t; z̃0; ε).
We first see the invariance of Λ̃±0 , for ε = 0. Let us consider z̃± = F±0 (θ, v, s) and the flow
φ̃(t; z̃±; 0). If 0 ≤ t ≤ (1− θ)α(v) then

φ̃(t; z̃±; 0) = F±0 (θ +
t

α(v)
, v, s) ∈ Λ̃±0

and it is hence invariant, as it is given by the image by F±0 of a point in N . At t = (1−
θ)α(v), the flow crosses the switching manifold u = 0 with positive v at the point which,
using property (6.3.58), is given by F±0 (1, v, s) = (0, G±0 (p±0 (v, s))) = (0, v, Q±, s + α(v)).
Hence, if (1− θ)α(v) ≤ t ≤ (2− θ)α(v), we can write

φ̃(t; z̃±; 0) = φ̃(t− (1− θ)α(v);F±0 (1, v, s); 0)

= φ̃
(
t− (1− θ)α(v); 0, v, Q±, s+ α(v)

)

= F±0 (
t

α(v)
− (1− θ), p±0 (v, s))

= F±0 (
t

α(v)
− (1− θ), v, s+ α(v)),

and hence is also invariant because it is given by the image of a point in N by F±0 . In
general, using that the impacts with the switching manifold Σ̃+ (v > 0) are given at
tn = (n− θ)α(v), we can write the flow for (n− θ)α(v) ≤ t ≤ (n+ 1− θ)α(v) as

φ̃(t; z̃±; 0) = φ̃(t− (n− θ)α(v);F±0 (1, (p±0 )n−1(v, s)); 0)

= F±0

(
t

α(v)
− (n− θ), (p±0 )n (v, s)

)

= F±0

(
t

α(v)
− (n− θ), v, s+ nα(v)

)
,
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providing us the invariance for all t ≥ 0. Proceeding similarly for t ≤ 0, we get the
invariance of the manifolds Λ̃±0 = F±0 (N) for the flow φ̃ for all t ∈ R.

Let us consider ε > 0 and z̃+ = F+
ε (θ, v, s) (analogously for z̃− = F−ε (θ, v, s)). We

first find the first impact with the switching manifold Σ̃+ with v > 0,

z̃1 =
(
0, G+

ε (p+
ε (v, s)

)
.

Calling s1 = Πs (z̃1), and t1 = s1 − s, this impact occurs for the flow φ̃(t; z̃+; ε) at

t = (1− θ)t1.

Then, for 0 ≤ t ≤ (1− θ)t1,

φ̃(t; z̃+; ε) = F+
ε (θ +

t

t1
, v, s) ∈ Λ̃+

ε ,

and it is hence invariant because it is given by the image by F+
ε of a point in N .

As for the unperturbed case, after the first impact we write the flow using the last impact
as initial condition. In general, the flow φ̃(t; z̃+; ε) impacts Σ̃+ at points

z̃n = (0, G+
ε ((p+

0 )n(v, s))),

and occur at times given by

t = (sn − s)︸ ︷︷ ︸
:=tn

−θ (s− s1)︸ ︷︷ ︸
t1

, n ≥ 1,

where
sn = Πs((p

+
ε )n(v, s)).

Hence, if tn − θt1 ≤ t ≤ tn+1 − θt1, we can write

φ̃(t; z̃; ε) = φ̃(t− tn + θt1;
(
0, G+

ε

(
(p+
ε )n(v, s)

))
; ε)

= F+
ε

(
t− tn + θt1
sn+1 − sn

, (p+
0 )n(v, s)

)
,

and Λ̃+
ε is thus invariant for φ̃ for t ≥ 0. Arguing similarly for t < 0, we get that

φ̃(t; z̃+; ε) ∈ Λ̃+
ε , ∀t ∈ R.

Analogous arguments hold for φ̃(t; z̃−; ε) if z̃− = F−ε (θ, v, s).

As φ(t; z̃; ε) and Γ̃±ε are ε-close to φ(t; z̃; 0) and Γ̃±, respectively, we have that

|F±ε (θ, v, s)− F±0 (θ, v, s)| = O(ε),
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which gives us the Lipschitz property. In addition, note that

Λ̃±ε ∩ Σ̃+ = {0} × Γ̃±ε .

Let us now wonder about the stable and unstable manifolds W s,u(Λ̃±ε ). For every
z̃± ∈ Λ̃±ε we want to find points z̃s,u fulfilling (6.3.55) and hence defining W u(Λ̃−ε ) and
W s(Λ̃+

ε ) (similarly forW s(Λ̃−ε ) andW u(Λ̃+
ε )). We proceed here with the manifoldW s(Λ̃+

ε );
analgous arguments hold for the other manifolds.
Let

z̃+ = F+
ε (θ, v, s) = φ̃(τ+; (0, ω̃+); ε),

with

ω̃+ = G+
ε (v, s) = (v, gε(v, s), s) ∈ Γ̃+

ε

τ+ =
(
Πs

(
Pε(ω̃

+)
)
− s
)
θ,

be a point in Λ̃+
ε .

From Theorem 6.3.1 we know that there exists

ω̃s = (ωs, ss) = Gs
ε(v, s, η) ∈ W s(Γ̃+

ε )

such that
|P n
ε (ω̃s)− P n

ε (ω̃+)| < K+(λ̄+)n, n→∞, (6.3.60)

where 0 < λ̄+ < 1 is given in (6.3.46).
Let us now consider the impact sequences associated with the points ω̃+ and ω̃s,

ω̃+
i =

(
vi,+ε , xi,+ε , yi,+ε , si,+ε

)

ω̃si =
(
vi,sε , x

i,s
ε , y

i,s
ε , s

i,s
ε

)
.

Using that

P n
ε (ω̃+) = ω̃+

2n

P n
ε (ω̃s) = ω̃s2n,

and recalling that, using the auxiliary map P ∗ε defined in (6.3.7),

ω̃+
2i+1 = P+

ε (ω̃+
2i)

ω̃s2i+1 = P+
ε (ω̃s2i)

if (0, ω̃+), (0, ω̃s) ∈ Σ+ × R2 × TT , as the map P+
ε defined in §6.3.1 is a smooth map, by

property (6.3.60) we also have that

∣∣ω̃si − ω̃+
i

∣∣ < K̃+(λ̄+)i, i→∞,
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for some K̃+ > 0.
Consequently, the sequences ssi = si,sε and s+

i = si,+ε fulfill

|ssi − s+
i | < K̂+(λ̄+)i, i→∞,

for some K̂+ > 0.
In other words, there exist two sequences of times, tsi = ssi − ss and t+i = s+

i − s, where
the impacts occur, such that

∣∣∣φ̃(tsi ; (0, ω̃s); ε)− φ̃(t+i ; (0, ω̃+); ε)
∣∣∣ < K̃+λ̄i, i→∞ (6.3.61)

and
|tsi − t+i | < | s+ − ss︸ ︷︷ ︸

s−ss
|+ K̃+(λ̂+)i, i→∞.

Let now τ ′ be
τ ′ = s+ − ss = s− ss

and define
z̃s = φ̃(τ+ + τ ′; (0, ω̃s); ε).

Let us now show that this is the point we are looking for.
We first note that

Πs

(
φ̃(t; z̃+; ε)

)
= s+ τ+ + t

Πs

(
φ̃(t; z̃s; ε)

)
= ss + τ+ + τ ′ + t

= s+ τ+ + t,

and the s coordinates of both trajectories are the same, which is a necessary condition.
The fact that the perturbed manifold Γ̃+

ε is compact ensures us that the sequences tsi+1−tsi
and t+i+1 − t+i are bounded (they are in fact α+(v) +O(ε) or α−(−v) +O(ε)). Hence, if t
is large enough, we can always find i such that

t+i − τ+ < t < t+i+1 − τ+

tsi − τ+ − τ ′ < t < tsi+1 − τ+ − τ ′,

and write the flows

φ̃(t; z̃+; ε) = φ̃(t− t+i + τ+; (0, ω̃+
i ); ε) (6.3.62)

φ̃(t; z̃s; ε) = φ̃(t− tsi + τ+ + τ ′; (0, ω̃si ); ε). (6.3.63)

In particular, as (
t+i − τ+

)
−
(
tsi − τ+ − τ ′

)
−→ 0,
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if t is large enough, we can always assume that

ai := max(t+i − τ+, tsi − τ+ − τ ′) < t < min(t+i+1 − τ+, tsi+1 − τ+ − τ ′) =: bi+1.

For t ∈ (ai, bi+1), both flows (6.3.62) and (6.3.63) are located at the same domain S± ×
S+ × TT and hence, the derivative of the function

u(t) = |φ̃(t; z̃+; ε)− φ̃(t; z̃s; ε)|

is a Lipschitz function because so are the fields associated with the flows φ̃±+. Note that
no impacts occur in the interval (ai, bi+1). Let K > 0 be the largest Lipschitz constant of
these two fields; then, for t ∈ (ai, bi+1) we have

u(t) ≤ K+(λ̄+)i +

∫ t

ai

Ku(t)dt.

Applying Gronwall’s Lemma, we obtain

u(t) ≤ K+(λ̄+)ieK(bi+1−ai).

As the difference bi+1− ai is bounded by max(α+(v), α−(−v)) +O(ε), it comes that there
exist a positive constant K+ such that

|φ(t; z̃s; ε)− φ(t; z̃+; ε)| < K+e−λ
+|t|, t→∞,

which is what we wanted to proof. This constant may be different from the one defined
in (6.3.34) and used in (6.3.60). To simplify the notation, we take the maximum between
both and use the same name.

In order to see that W u,s(Λ̃±ε ) are ε-close to W u,s(Λ̃±0 ) we recall that so do the manifolds
Γ̃±ε and Γ̃±. This implies that τ ′ given in (6.3.65) is of order ε. Now, using that, for ε = 0,

ω̃s = (0, v, σup(ξ), s)

ω̃+ = (0, v, Q+, s)

z̃s = (φU(τ+; 0, v), σup(ξ + τ+), s+ τ+)

z̃+ = (φU(τ+; 0, v), Q+, s+ τ+)

for ξ = − log η
λ+

, and that the flow φ̃(t; z̃; ε) is ε-close to φ̃(t; z̃; 0), it comes that, for ε > 0,

z̃s = (φU(τ+; 0, v), σup(ξ + τ+), s+ τ+) +O(ε)

z̃+ = (φU(τ+; 0, v), Q+, s+ τ+) +O(ε).

Hence, the manifolds W u,s(Λ̃±ε ) are ε-close to the unperturbed manifolds W u,s(Λ̃±).
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Remark 6.3.8. From the above construction, we can also provide maps equivalent to Gs,u
ε

to obtain the manifolds W s,u(Λ̃+
ε ),

F s,u
ε : Es −→ W s,u(Λ̃+

ε )
((θ, v, s) , η) 7−→ z̃s,u

(6.3.64)

Calling

ω̃s = Gs
ε(v, s, η) = (ωs, ss)

ω̃+ = G+
ε (v, s) = (ω+, s+) = (v, g+

ε (v, s), s+)

τ = (Πs(Pε(ω̃
s))− ss)θ

τ ′ = s+ − ss, (6.3.65)

the map F s
ε becomes

F s
ε (θ, v, s, η) = φ̃(τ + τ ′; (0, ω̃s); ε).

Similarly for F u
ε (θ, v, s, η) and also for the manifolds W s,u(Λ̃−ε ).

As shown in Proposition 6.3.1, if

z̃+ = F+
ε (θ, v, s) ∈ Λ̃+

ε

z̃s,u = F s,u
ε (θ, v, s, η) ∈ W s,u(Λ̃+

ε ),

then ∣∣∣φ̃(t; z̃+; ε)− φ̃(t; z̃s,u < ++ >; ε)
∣∣∣ < K+/−e−λ

+|t|, t→ +/−∞.

Similarly for z̃− ∈ Λ̃−ε and z̃s,u ∈ W s,u(Λ̃−ε ).

Remark 6.3.9. The delay τ ′ given in (6.3.65) has to be considered because the section Σ̃
does not necessary have to be an isochrone. Note that, when considering the delay τ ′, we
are in fact constructing such isochrone because we are finding for each η the point whose
orbit goes through (0, ω̃s) and takes the same time as (0, ω̃+) to return to Σ̃+.

Remark 6.3.10. In the previous arguments we have used that the direct impact sequences
of the points ω̃+ and ω̃s are infinite.
The first fact comes from the fact that ω̃+ ∈ Γ̃+

ε and hence, as Γ̃+
ε is invariant and ε-close

to Γ̃+
0 , it is contained in Σ+×S+×TT , the flow φ̃(t; (0, ω̃+); ε) never crosses the switching

manifold associated with x = 0.
To see the second fact, if ω̃s is chosen to be in Σ+×S+×TT , then the flow φ̃(t; (0, ω̃s); ε)
approaches Λ̃+

ε for t > 0, and thus neither crosses the switching manifold x = 0. It may
happen however that W s(Λ̃+

ε ) crosses x = 0 more than once backwards in time. In this
case, ω̃s has to be chosen in the piece of W s(Γ̃+

ε ) “closest to” Γ̃+
ε .

Finally, property (6.3.55) allows us to refer to W s,u(Λ̃±ε ) as invariant stable and un-
stable manifolds of Λ̃±ε and hence, to refer to Λ̃±ε as normally hyperbolic-like invariant
manifolds.
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6.4 Scattering map

6.4.1 Transverse intersection of the stable and unstable mani-
folds

In order to introduce the scattering map, we first wonder about sufficient conditions for
the intersection of the stable and unstable manifolds of Λ̃+

ε and Λ̃−ε when ε > 0. The
following result, equivalent to Proposition 9.1 in [DdlLS06], provides sufficient conditions
for both manifolds to intersect transversally in a three-dimensional heteroclinic manifold
which can be parametrized by the coordinates (θ, v, s) ∈ T× [v1, v2]× TT .

Proposition 6.4.1. Let (6.3.36) be a parametrization of the unperturbed heteroclinic
manifold W u(Λ̃−0 ) = W s(Λ̃+

0 ), and assume that there exists an open set J ⊂ N such that,
for all (θ0, v0, s0) ∈ J , the function

ζ 7−→M(ζ, θ0, v0, s0), (6.4.1)

with

M(ζ, θ0, v0, s0) :=

∫ ∞

−∞
{X, h} (φU (θ0α(v0) + ζ + t; 0, v0) , σup(t), s0 + ζ + t) dt, (6.4.2)

has a simple zero at ζ = ζ̄(θ0, v0, s0). Then, there exists locally unique points z̃∗(θ0, v0, s0; ε) ∈
W s(Λ̃+

ε ) ∩W u(Λ̃−ε ) and z̃±(θ0, v0, s0) ∈ Λ̃±ε such that

lim
t→±∞

φ̃(t; z̃∗; ε)− φ̃(t; z̃±; ε) = 0.

Moreover, the heteroclinic trajectory φ̃(t; z̃∗; ε) intersects the switching manifold given by
x = 0 at a point z̃∗0(θ0, v0, s0, ε) ∈ R2 × Σ× TT fulfilling

Πy(z̃
∗
0) = yh

+
ε

yh

∫ 0

−∞

{
X−, h

} (
φU(θ0α(v0) + ζ̄ + t; 0, v0), σup(t), s0 + ζ̄ + t

)
dt+O(ε2), (6.4.3)

where yh is the y coordinate of the unperturbed upper heteroclinic connection given
in (6.2.10)-(6.2.11), σup(0) = (0, yh).

Proof. We first study the intersection of the W s(Λ̃+
ε ) and W u(Λ̃−ε ) with the section given

by x = 0, R2 × Σ× TT . To this end, we consider a point at the intersection between the
unperturbed heteroclinic connection and this section. In terms of the parametrization
provided in (6.3.64), such a point in this 3-dimensional manifold can be given in terms of
the parameters (θ, v, s) as

z̃0(θ0, v0, s0) := F s,u
0 (θ0, v0, s0, 1) = (φU(θ0α(v0); 0, v0), σup(0), s0)

= (φU(θ0α(v0); 0, v0), 0, yh, s0) ∈ {x = 0} ∩W u(Λ̃−) = {x = 0} ∩W s(Λ̃+),
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where (0, yh) = σup(0), Σ̃ is given in (6.3.1) and φU(θ0α(v0); 0, v0) is the solution of
system (6.2.4) such that φU(0; 0, v0) = (0, v0). However, in order to easily identify points
in the perturbed heteroclinic manifold with points in the normally hyperbolic manifolds
Λ̃±ε , we introduce a fourth parameter, ζ ∈ R, in the parametrization of z̃0 as follows

z̃0(θ0 +
ζ

α(v0)
, v0, s0 + ζ) := (φU (θ0α(v0) + ζ; 0, v0) , 0, yh, s0 + ζ) (6.4.4)

∈ {x = 0} ∩W u(Λ̃−) = {x = 0} ∩W s(Λ̃+).

Let us consider the line

Ñ = {z̃0 + l(0, 0, 0, 1, 0), l ∈ R} ⊂ R2 × Σ× TT

and define the points

z̃s/u (ζ, θ0, v0, s0, ε)

=

(
0, ys/u, φU(

(
θ0 +

ζ

α(v0)

)
α(v0) + ζ; 0, v0), s0 + ζ

)
= W s/u(Λ̃+/−

ε ) ∩ Ñ . (6.4.5)

The existence of z̃s/u comes from the following argument.
On one hand, the 4-dimensional perturbed manifolds W s/u(Λ̃

+/−
ε ) exist and are ε-close

to W s/u(Λ̃+/−) (see Proposition 6.3.1). On the other hand, due to the form of the
Hamiltonians X± given in (6.2.5), the intersection of Ñ with the unperturbed mani-
fold W u(Λ̃−) = W s(Λ̃+) is transversal at z̃0. This permits us to ensure that these points
exist and are unique for ε > 0 small enough. Moreover, they are of the form

z̃u/s = z̃0 + (0, O (ε) , 0, 0, 0) .

In order to see that the manifolds W u(Λ̃−ε ) and W s(Λ̃+
ε ) intersect transversally at the

section given by x = 0, R2 × Σ × TT , we study the distance between the points z̃u,s

measured using the unperturbed Hamiltonian,

∆(θ0 +
ζ

α(v0)
, v0, s0 + ζ, ε) = H0 (z̃u)−H0 (z̃s) = X(z̃u)−X(z̃s), (6.4.6)

where X(x, y) is the piecewise-defined Hamiltonian associated with system (6.2.3) and
X(z̃) is a shorthand for X (Πx (z̃) ,Πy (z̃)). Note that, as the Hamiltonian X is continuous
at the switching surface x = 0 where the points z̃s,u belong to, it is not relevant which of the

branches, X±, is applied to evaluate (6.4.6). In fact we have X(z̃u)−X(z̃s) = (yu)2

2
− (ys)2

2
.

We proceed now solving the equation

∆(θ0 +
ζ

α(v0)
, v0, s0 + ζ, ε) = 0, (6.4.7)
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which we choose to solve for ζ. That is, we want to find ζ∗(θ0, v0, s0, ε) such that

∆(θ0 +
ζ∗

α(v0)
, v0, s0 + ζ∗, ε) = 0.

In order to find ζ∗ we proceed as usual in Melnikov-like methods. That is, we first obtain
an explicit expression of the first order term of the expansion in powers of ε of Eq. (6.4.7).
Then, assuming the existence of simple zeros for γ of this first order term, we apply the
implicit function theorem to find ζ∗.

To find an expression for ∆ we proceed as in the proof of Proosition 6.3.1 but making
the reverse argument.
As z̃s and z̃u do not necessary belong to Σ̃, we evolve with the flow φ̃ with initial conditions
z̃s and z̃u forwards and backwards in time, respectively, until the section Σ̃+ is reached,
so we obtain points in {0} ×W s(Γ̃+

ε ) and {0} ×W u(Γ̃−ε ), respectively. That is, we use
the maps κε, κ̄ε, P

−
ε and P+

ε deinfed in section 6.3.1 to obtain the points

(0, ω̃s) =

{
κε(z̃

s) if z̃s ∈ S− × Σ+ × TT
P−ε (κε(z̃

s)) if z̃s ∈ S+ × Σ+ × TT

and

(0, ω̃u) =

{
κ̄ε(z̃

u) if z̃u ∈ S+ × Σ+ × TT
(P+

ε )−1 (κ̄ε(z̃
u)) if z̃u ∈ S− × Σ+ × TT

Adding and subtracting X(ω̃s) = X+(ω̃s) and X(ω̃u) = X−(ω̃u) in Eq. (6.4.6), we write
∆ as

∆(θ0 +
ζ

α(v0)
, v0, s0 + ζ, ε) =

∆−(θ0 +
ζ

α(v0)
, v0, s0 + ζ, ε)−∆+(θ0 +

ζ

α(v0)
, v0, s0 + ζ, ε) (6.4.8)

where

∆−(θ0 +
ζ

α(v0)
, v0, s0 + ζ, ε) = X−(ω̃u)−X−(ω̃u) +X(z̃u) (6.4.9)

∆+(θ0 +
ζ

α(v0)
, v0, s0 + ζ, ε) = X+(ω̃s)−X+(ω̃s) +X(z̃s). (6.4.10)

As the points z̃s/u belong to W s/u(Λ̃
+/−
ε ), the points ω̃s/u belong to W s/u(Γ̃

+/−
ε ). From

Theorem 6.3.1 it comes that there exist two points, ω̃± ∈ Γ̃±ε such that

P−n(ω̃u)− P−n(ω̃−) < K−(λ̄−)−n −→ 0 (6.4.11)

P n(ω̃s)− P n(ω̃+) < K+(λ̄+)n −→ 0 (6.4.12)
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as n → ∞. We now obtain expressions for ∆±. We write here the details for the
derivations of these expressions for ∆−; proceeding similarly, one derives also equivalent
formulas for ∆+.
Let us oberserve that, as z̃u ∈ W u(Λ̃−ε ), its backward flow never reaches x = 0 and
therefore κ̄ε(z̃

u) is well defined. Moreover, (0, ω̃u) ∈ Σ× R2 × TT . Analogously for z̃s.
Adding and subtracting X−(ω̃−) in (6.4.9) we write ∆− as

∆−(θ0 +
ζ

α(v0)
, v0,s0 + ζ, ε)

= X−(ω̃u) (6.4.13)

−X−(ω̃−) (6.4.14)

−X− (ω̃u) +X (z̃u)

+X−
(
ω̃−
)
,

where we have split the equation to make what follows more clear.
We now remark that, for all n, the points P−nε (ω̃u) and P−nε (ω̃−) belong to the (inverse)
impact sequence of the points ω̃u and ω̃−, respectively. Hence, we can apply Lemma 6.3.1
to Eqs. (6.4.13) and (6.4.14) to obtain

∆−(θ0 +
ζ

α(v0)
, v0,s0 + ζ, ε)

= ε

∫ 0

sn,u
ε −Πs(ω̃u)

{
X−, h

}(
φ̃(t; (0, ω̃u); ε)

)
dt+X−

(
P−nε (ω̃u)

)

− ε
∫ 0

sn,−
ε −Πs(ω̃−)

{
X−, h

}(
φ̃
(
t; (0, ω̃−); ε

))
dt−X−

(
P−nε (ω̃−)

)

−X− (ω̃u) +X (z̃u)

+X−
(
ω̃−
)
,

where

si,uε = Πs

(
P−iε (ω̃u)

)

si,−ε = Πs

(
P i
ε(ω̃

−)
)

are the s coordinate of the even terms of the (inverse) impact sequences of ω̃u and ω̃−,
respectively.



CHAPTER 6. SCATTERING MAP 149

We now merge the two integrals and we write ∆− as

∆−(θ0 +
ζ

α(v0)
, v0, s0 + ζ, ε)

= ε

∫ 0

s−n,u
ε −Πs(ω̃u)

({
X−, h

}(
φ̃ (t; (0, ω̃u); ε)

)

−
{
X−, h

}(
φ̃
(
t; (0, ω̃−); ε

)))
dt (6.4.15)

+ ε

∫ s−n,−
ε −Πs(ω̃−)

s−n,u
ε −Πs(ω̃u)

{
X−, h

}(
φ̃(t; (0, ω̃−); ε)

)
dt (6.4.16)

+X−
(
P−nε (ω̃u)

)
−X−

(
P−nε (ω̃−)

)
(6.4.17)

−X− (ω̃u) +X (z̃u)

+X−(ω̃−),

where now the integral in (6.4.15) has to be split in 2n integrals delimited by consecutive
values of t given by both impact sequences. The integral in (6.4.16) has to be added to
compensate the change of the lower integration limit of the integrand

{
X−, h

}(
φ̃
(
t; (0, ω̃−); ε

))
.

We now want to make n→∞.
On the one hand, property (6.4.11) tells us that expression (6.4.17) tends to zero when
n→∞.
On the other hand, when n → ∞, Eq. (6.4.16) is of order O(ε2). This comes from
the following argument. We first recall that the points ω̃− and ω̃u are images of points
in N and Eu by the maps G−ε and Gu

ε given in Theorem 6.3.1, respectively. As these
maps are regular in ε, and Πs(G

−
0 (v, s) = Πs(G

u
0(v, s, η))), ∀η ∈ [0, 1], we have that

Πs(ω̃
u)−Πs(ω̃

−) = O(ε). Hence, recalling that, by property (6.4.11), s−n,−ε − s−n,uε tends
to zero exponentially, it comes that

s−n,−ε − Πs(ω̃
−)−

(
s−n,uε − Πs(ω̃

u)
)

< K−(λ̄−)−n +O(ε) −→ O(ε), n −→∞.

As the integrand is continuous, expression (6.4.16) becomes of order O(ε2) when n→∞.
We now focus on the integral given in (6.4.15). As noted in the proof of Proposition 6.3.1,
this integral does not converge when n → ∞. This is because, for ε > 0, the switching
manifold Σ̃ is not an isochrone and hence φ̃(t; (0, ω̃u); ε) /∈ W u(φ̃(t; (0, ω̃−); ε)). As argued
in the proof of Proposition 6.3.1, one has to consider the delay τ ′ = Πs(ω̃

−)− Πs(ω̃
u) to

obtain φ̃(t+τ ′; (0, ω̃u); ε) ∈ W u(φ̃ (t; (0, ω̃−); ε)). Hence, due to the hyperbolicity property
∣∣∣φ̃(t; (0, ω̃−); ε)− φ̃ (t+ τ ′; (0, ω̃u); ε)

∣∣∣ < K−eλ
−t −→ 0, t→ −∞
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the integral becomes convergent.
Then, the error due to introducing the delay τ ′ becomes

ε

∫ 0

s−n,u
ε −Πs(ω̃u)

({
X−, h

}(
φ̃ (t; (0, ω̃u); ε)

)

−
{
X−, h

}(
φ̃ (t+ τ ′; (0, ω̃u); ε)

))
dt

= ε

(
X− (ω̃u)−X−

(
φ̃(τ ′; (0, ω̃u); ε)

)

−X−
(
φ̃(s−n,uε − Πs(ω̃

u); (0, ω̃u); ε)
)

+X−
(
φ̃(s−n,uε − Πs(ω̃

u) + τ ′; (0, ω̃u); ε)
))

= ε

∫ 0

−τ ′

({
X−, h

}(
φ̃ (t; (0, ω̃u); ε)

)
dt (6.4.18)

− ε
∫ 0

−τ ′

{
X−, h

}(
φ̃
(
t+ s−n,uε − Πs(ω̃

u); (0, ω̃u); ε
)))

dt (6.4.19)

= O(ε2).

Recalling that τ = O(ε) and that the flows restricted to the unstable manifold are bounded
backwards in time, the integrals in (6.4.18) and (6.4.19) are of order O(ε), and hence the
total error produced byt introducing the dealy τ ′ in φ̃(t; (0, ω̃u; ε)) is of order O(ε2).

We then make n→∞, to obtain

∆−(θ0 +
ζ

α(v0)
, v0, s0 + ζ, ε)

= ε

∫ 0

−∞

(
{X, h}

(
φ̃ (t+ τ ′; (0, ω̃u); ε)

)

−
{
X−, h

}(
φ̃
(
t; (0, ω̃−); ε

)))
dt+O(ε2) (6.4.20)

+O(ε2)

−X− (ω̃u) +X (z̃u)

+X−(ω̃−).

We now expand this in powers of ε. On one hand, as Q− is critical point of the system
associated with the Hamiltonian X, using that

(
Πx

(
ω̃−
)
,Πy

(
ω̃−
))

= Q− +O(ε),

it comes that {
X−, h

}(
φ̃
(
t; ω̃−; ε

))
= O(ε).
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On the other hand, and for the same reason, we have that

X−(ω̃−) = X−(Q−) +O(ε2).

Hence, we can write ∆− as

∆−(θ0 +
ζ

α(v0)
, v0, s0 + γ, ε)

= ε

∫ 0

−∞

( {
X−, h

}(
φ̃ (t; (0, ω̃u0 ); 0)

)
dt+O(ε2) (6.4.21)

−X− (ω̃u) +X (z̃u) (6.4.22)

+X−(Q−) +O(ε2),

where
(0, ω̃u0 ) = κ−1

0 (z̃0),

and z̃0 is given in (6.4.4).
Let us now worry about the difference given in (6.4.22). As the flow φ is as smooth as
the flows φ±± between the points ω̃u and z̃u, we can apply the fundamental theorem of
calculus to obtain

X−(z̃u)−X−(ω̃u) = ε

∫ 0

sε−Πs(ω̃u)

{
X−, h

}
(φ(t; z̃u; ε)) dt

= ε

∫ 0

s0−Πs(ω̃u
0 )

{
X−, h

}
(φ(t; z̃0; 0)) dt+O(ε2).

Taking into account that φ(t + s0 − Πs(ω̃
u
0 ); z̃0; 0) = φ(t; ω̃u0 ; 0), we can merge this last

integral with the one given in (6.4.21) to finally obtain

∆−(θ0 +
ζ

α(v0)
, v0, s0 + ζ, ε) = X−(Q−) + ε

∫ 0

−∞

{
X−, h

}
(φ(t; z̃0; 0)) +O(ε2). (6.4.23)

Proceeding similarly for ∆+, we also get

∆+(θ0 +
ζ

α(v0)
, v0, s0 + ζ, ε) = X+(Q+)− ε

∫ ∞

0

{
X+, h

}
(φ(t; z̃0; 0)) dt+O(ε2).

Replacing these expressions in Eq. (6.4.8), we finally obtain an explicit expression for the
first term of the expansions in powers of ε of the distance between the points z̃u and z̃s,

∆(θ0 +
ζ

α(v0)
, v0, s0 + ζ, ε) =

ε

∫ ∞

−∞
{X, h} (φU (θ0α(v0) + ζ + t; 0, v0) , σup(t), s0 + ζ + t) dt+O

(
ε2
)

:= εM(ζ, θ0, v0, s0) +O(ε2).

(6.4.24)
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On one hand, this integral has to be separated in two pieces from −∞ to 0 and from 0
to +∞ to distinguish between the integrands {X−, h} and {X+, h} respectively. On the
other hand, as detailed in Remark 6.3.6, each of these integrals is compound by a sum of
integrals given by the impact sequence associated with u = 0 of the point z̃0 and whose
integrands are smooth fucntions. Hence, the function

ζ 7−→M(ζ, θ0, v0, s0) (6.4.25)

is a smooth function as regular as the flows φ̃±± associated with system (6.2.14) restricted
to their respective domains.
Taking (θ0, v0, s0) ∈ J given in Proposition 6.4.1, let ζ̄(θ0, v0, s0) be a simple zero of (6.4.25).
Then, by applying the implicit function theorem to the equation

∆(θ0 + ζ
α(v0)

, v0, s0 + ζ)

ε
= M (ζ, θ0, v0, s0) +O(ε) = 0

at the point (ζ, θ0, v0, s0, ε) = (ζ̄ , θ0, v0, s0, 0), it comes that, if ε > 0 is small enough, there
exists then

ζ∗(θ0, v0, s0, ε) = ζ̄ +O(ε) (6.4.26)

which solves Eq. (6.4.7).
Thus, for every (θ0, v0, s0) ∈ J , there exists a locally unique point at the section R2×Σ×TT
belonging to the heteroclinic manifold between the manifolds Λ̃±ε ,

z̃∗0(θ0 +
ζ∗

α(v0)
, v0, s0 + ζ∗; ε) = z̃u(ζ∗, θ0, v0, s0, ε)

= z̃s(ζ∗, θ0, v0, s0, ε)

∈ W u(Λ̃−ε )>∩W s(Λ̃+
ε ) ∩ Σ× R2 × TT ,

(6.4.27)

which is of the form

z̃∗0(θ0, v0, s0; ε) = (0, y∗h, φU(θ0α(v0) + ζ∗; 0, v0), s0 + ζ∗).

Let us now obtain the explicit expression, given in (6.4.3), of the first order term of
the expansion in powers of ε of y∗h.

Recalling that X−(0, y) = y2

2
, we expand in powers of ε the value y∗h =

√
2X(z̃∗0). We

first have, using z̃∗0(θ0, v0, s0; 0) = z̃0,

y∗h =
√

2X(z̃0)︸ ︷︷ ︸
yh

+ε
1√

2X(z̃0)︸ ︷︷ ︸
yh

d

dε

(
X(z̃∗0)

)
|ε=0

.

Using the definition of ∆− given in (6.4.9) and using that z̃∗0 = z̃u, it comes that

d

dε
X(z̃u)|ε=0 =

d

dε
∆−|ε=0.
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Hence, from the expansion in powers of ε of ∆− given in (6.4.23) we get

y∗h = yh +
ε

yh

∫ 0

−∞

{
X−, h

}(
φ̃ (t; z̃0; ε)

)
dt+O(ε2) =

yh +
ε

yh

∫ 0

−∞

{
X−, h

} (
φU(θ0α(v0) + ζ̄ + t; 0, v0), σup(t), s0 + ζ̄ + t

)
dt+O(ε2),

We finally consider the point

z̃∗(θ0, v0, s0; ε) = φ−ζ∗(z̃
∗
0 ; ε), (6.4.28)

which belongs to W u(Λ−ε )∩W s(Λ+
ε ) but is not in Σ̃. Moreover, using that ζ∗ = ζ̄ +O(ε),

as given in (6.4.26), z̃∗ is of the form

z̃∗(θ0, v0, s0; ε) =
(
φU(θ0α(v0); 0, v0), σ(−ζ̄)), s0

)
+O(ε),

where (φU(θ0α(v); 0, v), σ(ξ), s) is the parametrization of the unperturbed heteroclinic
connection introduced in (6.3.36). As z̃∗ depends on (θ0, v0, s0) ∈ N , this permits us to
consider two points

z̃±(θ0, v0, s0; ε) = F±ε (θ±0 , v
±
0 , s

±
0 ) = F±ε (θ0, v0, s0) +O(ε) ∈ Λ̃±ε , (6.4.29)

such that
lim
t→±∞

φ(t; z̃∗; ε)− φ(t; z̃±; ε) = 0,

where F±ε are the parametrizations of Λ̃±ε defined in (6.3.59) and (θ±0 , v
±
0 , s

±
0 ) ∈ N , with

N the reference manifold given in (6.3.37).

Note that, as Λ̃±ε are invariant manifolds, the flows φ̃(t; z̃±; ε) do not cross the switching
manifold given by x = 0 for any t ∈ (−∞,∞). As a consequence of that, the direct and
inverse impact sequences introduced in (6.3.17)-(6.3.18) associated with the points z̃± are
defined for all their iterates. Hence, the flows φ̃(t; z̃±; ε) can be written of the form given
in (6.3.28) for t ∈ (−∞,∞).
Regarding the flow φ̃(t; z̃∗; ε), as it is restricted to the heteroclinic manifold between Λ̃−ε
and Λ̃+

ε , it crosses the switching manifold given by x = 0 only once. This crossing occurs
for t = ζ∗ at z̃∗0 given in (6.4.27), and all the iterates for the direct and inverse impact
sequence associated with z̃∗0 are defined. Hence, using that

φ̃(t; z̃∗; ε) = φ̃(t− ζ∗; z̃∗0 ; ε), (6.4.30)

the flow φ̃(t; z̃∗; ε) can also be written as in (6.3.28) for t ∈ (−∞,∞).

Remark 6.4.1. We remind that, from the beginning of this work, we have focused on
the heteroclinic manifold close to W u(Λ̃−0 ) = W s(Λ̃+

0 ), which is given by the “upper”
heteroclinic connection of system X . Obviously, one can derive equivalent conditions to
Proposition 6.4.1 for the intersection between the manifolds W s(Λ̃−ε ) and W u(Λ̃+

ε ).
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6.4.2 First order properties of the scattering map

Let ζ̄ be a simple zero of the function (6.4.1) for any (θ, v, s) ∈ J ⊂ N . Then, for any
(θ, v, s) ∈ J we can define the scattering map

Sup
ε : Λ̃−ε −→ Λ̃+

ε

z̃−(θ, v, s; ε) 7−→ z̃+(θ, v, s; ε)
(6.4.31)

which identifies the points in (6.4.29) connected by the orbit of the heteroclinic point
z̃∗(θ, v, s; ε) ∈ W u(z̃−) ∩W s(z̃+), which is of the form

z̃∗(θ, v, s; ε) = (φU(θα(v); 0, v), σup(−ζ̄), s) +O(ε).

Following Remark 6.4.1, it is of course also possible to define another scattering map,
Sdown
ε , by identifying points in the manifolds Λ̃±ε connected by the orbit of a point at the

intersection of the manifolds W s(Λ̃−ε ) and W u(Λ̃+
ε ).

Note that, by contrast to [DdlLS06], we deal here with heteroclinic manifolds and not
homoclinic. In the homoclinic case, the scattering map is understood as a map from a
normally hyperbolic manifold onto itself. We could also have such a situation here by
considering the composition of the two scattering maps mentioned above,

Sdown
ε ◦ Sup

ε : Λ̃−ε −→ Λ̃−ε
Sup
ε ◦ Sdown

ε : Λ̃+
ε −→ Λ̃+

ε

However, for this purpose one first needs to understand the dynamics inside the manifolds
and this is left for future work.
In this section, we focus on the scattering map Sup

ε defined by identifying points in the
manifolds Λ̃−ε and Λ̃+

ε , as written in (6.4.31). Obviously, everything that we derive in this
section can also be stated for the scattering map Sdown

ε , from Λ̃+
ε to Λ̃−ε determined by

the orbits of heteroclinic points in the intersection of W s(Λ̃−ε ) and W u(Λ̃+
ε ).

As it comes from Proposition 6.3.1 and has been shown in Eq. (6.4.29), the points
z̃±(θ, v, s) can be written in terms of the reference manifold N defined in (6.3.37) as

z̃±(θ, v, s; ε) = F±ε (θ±, v±, s±)

= F±0 (θ, v, s) +O(ε)

= (φU(θα(v); 0, v), Q±, s) +O(ε).

This induces a map
sup
ε : N −→ N

(θ−, v−, s−) 7−→ (θ+, v+, s+)

fulfilling
Sup
ε

(
F−ε (θ−, v−, s−)

)
= F+

ε

(
sup
ε (θ−, v−, s−)

)
.
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For ε = 0, z̃− = F−0 (θ, v, s) and z̃+ = F+
0 (θ, v, s), and the map Sup

0 sends a point
(φU(θα(v); 0, v), Q−, s) ∈ Λ̃−0 to (φU(θα(v); 0, v), Q+, s) ∈ Λ̃+

0 . Hence, in this case,

Sup
0 ◦ F−0 (θ, v, s) = F+

0 (θ, v, s), ∀(θ, v, s) ∈ N,

and sup
0 becomes the identity.

If ε > 0, sup
ε (θ−, v−, s−) and (θ−, v−, s−) become ε-close.

Using the maps given in Remark 6.3.8 that parametrize the stable and unstable man-
ifolds W s,u(Λ̃+,−

ε ), the points z̃∗(θ, v, s) ∈ W s(Λ̃+
ε ) ∩W u(Λ̃−ε ) can be also written as

z̃∗(θ, v, s; ε) = (φU(θα(v); 0, v), σup(−ζ̄), s) +O(ε)

= F s
0 (θ, v, s, η+

0 ) +O(ε),

or also in terms of F u
ε as

z̃∗(θ, v, s; ε) = (φU(θα(v); 0, v), σup(−ζ̄), s) +O(ε)

= F u
0 (θ, v, s, η−0 ) +O(ε).

where, using (6.3.48), η±0 become

η±0 = e±ζ̄λ
±
. (6.4.32)

We now want to derive properties of the image of the Scattering map (6.4.31). More
precisely, we want to measure the difference of the energy levels of the points z̃±. This is
equivalent to measure the difference between energy levels of points in N and their image
by sup

ε . To this end, as it is usual in Melnikov-like theory, we use the Hamiltonian U
which, recalling that U(0, v) = v2

2
, is equivalent to measure the distance in the coordinate

v. That is, we wonder about

∆U = U(z̃+)− U(z̃−), (6.4.33)

where U(z̃) is a shorthand for U(Πu(z̃),Πv(z̃)). Note that this difference is 0 for ε = 0,
and therefore ∆U = O(ε).
The following Proposition provides an expression for the first order term in ε of ∆U .

Proposition 6.4.2. Let (θ, v, s) ∈ J ⊂ N given in Proposition 6.4.1, and let ζ̄ = ζ̄(θ, v, s)
be a simple zero of the function

ζ −→M(ζ, θ, v, s),

where M is defined in (6.4.2). Let also z̃± ∈ Λ̃±ε be points such that

z̃+ = Sup
ε (z̃−).
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Then,

U(z̃+)− U(z̃−) = ε

∫ 0

−∞

(
{U, h}

(
(φU (θα(v) + t; 0, v) , σup(t− ζ̄), s+ t)

)

− {U, h}
(
φU(θα(v) + t; 0, v), Q−, s+ t

) )
dt

+ ε

∫ +∞

0

(
{U, h}

(
(φU (θα(v) + t; 0, v) , σup(t− ζ̄), s+ t)

)

− {U, h}
(
φU(θα(v) + t; 0, v), Q+, s+ t

) )
dt

+O(ε1+ρ2),

(6.4.34)

for some ρ2 > 0.

In order to prove this, we will use the following Lemma, whose proof is given after
proving Proposition 6.4.2.

Lemma 6.4.1. Let

(0, ω̃+) = (0, G+
ε (v, s)) ∈ Λ̃+

ε

(0, ω̃+
0 ) = (0, G+

0 (v, s)) ∈ Λ̃+
0 .

Then, there exists ρ > 0 and c > 0 independent of ε such that, if ε > 0 is small enough,
∣∣∣φ̃(t; (0, ω̃+); ε)− φ̃(t; (0, ω̃+

0 ); 0)
∣∣∣ = O(ερ)

for 0 ≤ t ≤ c ln 1
ε
.

Proof. Of Proposition 6.4.2
Let (θ, v, s) ∈ J and let ζ̄ be a simple zero of the function

ζ −→M(ζ, θ, v, s),

where M is defined in (6.4.2). Let also ζ∗(θ, v, s, ε) be the solution of Eq. (6.4.7) given by
the implicit function theorem near ζ̄, and z̃∗(θ, v, s; ε) the point defined in (6.4.28).
We now want to derive an expression for the first order term of the expansion in powers
of ε of expression (6.4.33). Let us write ∆U as

∆U = ∆U+ + ∆U−, (6.4.35)

where

∆U+ = U(z̃+)− U(z̃∗)

∆U− = U(z̃∗)− U(z̃−).
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We first proceed providing an expression for the difference ∆U+; an analogous one can be
obtained for ∆U−.
Let us now consider the points ω̃+ ∈ Γ̃+

ε and ω̃∗ ∈ W s(ω̃+) given by

ω̃+ = G+
ε (v+, s+) = (ω+, s+)

ω̃∗ = Gs
ε(v

+, s+, η+) = (ω∗, s∗),

and hence

(0, ω̃+) = F+
ε (0, v+, s+) = (0, ω+, s+)

(0, ω̃∗) = F s
ε (0, v+, s+, η+) = (0, ω∗, s∗).

We now add and subtract U(ω̃+) and U(ω̃∗) in the expression of ∆U+, so that it becomes

∆U+ = U(ω̃+)

− U(ω̃∗)

− U(ω̃+) + U(z̃+)

+ U(ω̃∗)− U(z̃∗).

As (0, ω̃+) and (0, ω̃∗) belong to the switching manifold given by u = 0, we can apply
Lemma 6.3.1 (Remark 6.3.7) to obtain expressions for U(ω̃+) and U(ω̃∗) and write ∆U+

as

∆U+ = −ε
∫ s2n,+

ε −s+

0

{U, h}
(
φ̃
(
t; (0, ω̃+); ε

))
dt+ U(P n

ε (ω̃+))

+ ε

∫ s2n,∗
ε −s∗

0

{U, h}
(
φ̃ (t; (0, ω̃∗); ε)

)
dt− U(P n

ε (ω̃∗))

− U(ω̃+) + U(z̃+)

+ U(ω̃∗)− U(z̃∗),

where si,+ε and si,∗ε are the s coordinates of the impact sequences associated with the
points ω̃+ and ω̃∗, respectively.
We now proceed as in the proof of Proposition 6.4.1 to merge these two integrals and
obtain

∆U+ = ε

∫ s2n,+
ε −s+

0

(
{U, h}

(
φ̃ (t; (0, ω̃∗); ε)

)
− {U, h}

(
φ̃
(
t; (0, ω̃+); ε

)))
dt (6.4.36)

− ε
∫ s2n,+

ε −s+

sn,∗
ε −s∗

{U, h}
(
φ̃ (t; (0, ω̃∗); ε)

)
dt (6.4.37)

+ U(P n
ε (ω̃+))− U(P n

ε (ω̃∗)) (6.4.38)

− U(ω̃+) + U(z̃+)

+ U(ω̃∗)− U(z̃∗),
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where the integral in (6.4.37) compensates the change of the integrals limits regarding
the integrand {U, h} φ̃ (t; (0, ω̃∗); ε)). Note that the integral in (6.4.36) has to be split
in several integrals delimited by consecutive values of t given by both impact sequences
associated with ω̃+ and ω̃∗.

We now want to make n→∞.
First of all, we note that the impact sequence associated with the point ω̃∗ may be finite
because the flow may eventually cross the switching manifold given by x = 0. However,
using the expression in (6.4.28) we can always relate the impact sequences associated
with the points z̃∗ and z̃∗0 , and hence extend the impact sequence associated with ω̃∗ after
crossing x = 0. As z̃∗0 belongs to the heteroclinic manifold and is located at x = 0, its
impact sequence is defined for all n, and thus we can assume that so it is for ω̃∗.
Arguing as for Proposition 6.4.1, when n → ∞, the expression (6.4.37) tends to be of
order O(ε2). This is due to the fact that

s2n,+
ε − s+ −

(
s2n,∗
ε − s∗

)
→ O(ε),

and that integrand is bounded.
Moreover, the term in (6.4.38) vanishes when n→∞.
As happened for Proposition 6.4.1, the integrand in (6.4.36) does not converge when
n→∞. In order to have convergence, we first have to delay the flow φ̃(t; (0, ω̃∗); ε) by

τ ′ = Πs(ω̃
+)− Πs(ω̃

∗) = s+ − s∗.

As shown in Proposition 6.3.1, this gives us convergence for the flows
∣∣∣φ̃(t+ τ ′; (0, ω̃∗); ε)− φ̃(t; (0, ω̃+); ε)

∣∣∣ < K+e−λ
+t, t→∞. (6.4.39)

We then write the integral in (6.4.36) as

ε

∫ s2n,+
ε −s+

0

(
{U, h}

(
φ̃ (t; (0, ω̃∗); ε)

)
− {U, h}

(
φ̃
(
t; (0, ω̃+); ε

)))
dt

= ε

∫ s2n,+
ε −s+

0

(
{U, h}

(
φ̃ (t+ τ ′; (0, ω̃∗); ε)

)
− {U, h}

(
φ̃
(
t; (0, ω̃+); ε

)))
dt (6.4.40)

+ ε

∫ τ ′

0

{U, h}
(
φ̃ (t; (0, ω̃∗); ε)

)
dt (6.4.41)

− ε
∫ τ ′

0

{U, h}
(
φ̃
(
t+ s2n,+

ε − s+; (0, ω̃∗); ε
))
dt, (6.4.42)

where, as in the proof of Proposition 6.4.1 (Eqs. (6.4.18)-(6.4.19)) the integrals (6.4.41)
and (6.4.42) compensate the addition of the delay τ ′ in φ̃(t; (0, ω̃∗); ε). Arguing similarly
the total error caused by introducing the delay τ ′ is of order O(ε2).
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We now show that the integral in (6.4.40) converges when n → ∞. We proceed
similarly as in the proof of Proposition 6.3.1. As mentioned above, the integral in (6.4.40)
has to be split in the sum of several integrals given by the impacts with the switching
manifold Σ̃, which occur at the times

t+i = si,+ε − s+

t∗i = si,∗ε − s∗ − τ ′.
Calling

ai = min(t+i , t
∗
i )

bi = max(t+i , t
∗
i ),

each of these integrals are of the form
∫ bi+1

ai

(
{U, h}

(
φ̃ (t+ τ ′; (0, ω̃∗); ε)

)
− {U, h}

(
φ̃
(
t; (0, ω̃+); ε

)))
dt. (6.4.43)

At the same time, each of these integrals has to be split in three integrals in the intervals

I1 = [ai, bi]

I2 = [bi, ai+1]

I3 = [ai+1, bi+1].

If t ∈ I1 ∪ I3, the two Poisson brackets in (6.4.43) differ because the flows belong to
different domains,

φ̃ (t+ τ ′; (0, ω̃∗); ε) ∈ S± × S± × TT
φ̃
(
t; (0, ω̃+); ε

)
∈ S∓ × S± × TT .

However, both flows are bounded and therefore so is the integrand when t ∈ I1∪I3. Using
that

∣∣t+i − t∗i
∣∣ < K+(λ̄+)i, which comes from the hyperbolicity given by Theorem 6.3.1,

the length of the intervals I1 and I3 tends exponentially to zero. Thus, the sum of integrals
in the intervals I1 and I3 converges.
If t ∈ I2, the hyperbolicity condition (6.4.39) holds which finally gives us the convergence
of the integral (6.4.40) when n→∞. As a consequence of all this, the integral in (6.4.36)
is convergent when n→∞. Hence, we can write ∆U+ as

∆U+ = ε

∫ ∞

0

(
{U, h}

(
φ̃ (t+ τ ′; (0, ω̃∗); ε)

)

− {U, h}
(
φ̃
(
t; (0, ω̃+); ε

)))
dt+O(ε2) (6.4.44)

+O(ε2) (6.4.45)

− U(ω̃+) + U(z̃+)

+ U(ω̃∗)− U(z̃∗),
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where now the integral (6.4.44) is convergent due to the hyperbolicity condition (6.3.55).

We now want to expand (6.4.44) in powers of ε. Unlike in the proof of Proposition 6.4.1,
when using the Hamiltonian U instead of X (compare expressions (6.4.20) and (6.4.44)),
the first order term in ε of the Poisson bracket {U, h} restricted to the manifold Λ̃+

ε does
not vanish. For finite fixed times, the difference between the perturbed and unperturbed
flows restrcited to Λ̃+

ε is of order O(ε). However, as the integral is performed from 0 to
∞, one has to proceed carefully.
Recalling that τ ′ = O(ε) and using Lemma 6.4.1, we can expand the integral in (6.4.44)
to obtain

∫ ∞

0

(
{U, h}

(
φ̃ (t+ τ ′; (0, ω̃∗); ε)

)
− {U, h}

(
φ̃
(
t+ τ ′; (0, ω̃+); ε

)))
dt

=

∫ c ln 1
ε

0

(
{U, h}

(
φ̃ (t; (0, ω̃∗); ε)

)
− {U, h}

(
φ̃
(
t; (0, ω̃+); ε

)))
dt

+

∫ ∞

c ln( 1
ε

)

(
{U, h}

(
φ̃ (t+ τ ′; (0, ω̃∗); ε)

)
− {U, h}

(
φ̃
(
t; (0, ω̃+); ε

)))
dt

=

∫ c ln 1
ε

0

(
{U, h}

(
φ̃ (t; (0, ω̃∗0); 0)

)
− {U, h}

(
φ̃
(
t; (0, ω̃+

0 ); 0
)))

dt+O(ερ ln
1

ε
)

+

∫ ∞

c ln 1
ε

(
{U, h}

(
φ̃ (t; (0, ω̃∗); ε)

)
− {U, h}

(
φ̃
(
t; (0, ω̃+); ε

)))
dt, (6.4.46)

where1

ω̃+
0 = G+

0 (v, s) = (ω+
0 , s)

ω̃∗0 = Gs
0(v, s, η+

0 ) = (ω∗0, s),

and η+
0 is given in (6.4.32).

We now wonder about the integral (6.4.46). Using the hyperbolicity property of the flow,
given by Proposition 6.3.1, we have that

∫ ∞

c ln 1
ε

(
{U, h}

(
φ̃ (t; (0, ω̃∗); ε)

)
− {U, h}

(
φ̃
(
t; (0, ω̃+); ε

)))
dt

<

∫ ∞

c ln 1
ε

K+e−λ
+t =

K+

λ+
e−λ

+c ln 1
ε =

K+

λ+
εcλ

+

=
K+

λ+
ερ̄,

1Let us remind that, when ε = 0, (v+, s+) = (v, s)
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with ρ̄ = cλ+ > 0. This allows us to write the integral (6.4.44) as

∫ ∞

0

(
{U, h}

(
φ̃ (t+ τ ′; (0, ω̃∗); ε)

)
− {U, h}

(
φ̃
(
t+ τ ′; (0, ω̃+); ε

)))
dt

=

∫ c ln 1
ε

0

(
{U, h}

(
φ̃ (t; (0, ω̃∗0); 0)

)
− {U, h}

(
φ̃
(
t; (0, ω̃+

0 ); 0
)))

dt

+O(ερ ln
1

ε
) +O(ερ̄).

By reverting the last argument, we can complete this integral from c ln 1
ε

to ∞ to finally
obtain

∆U+ = ε

∫ ∞

0

(
{U, h}

(
φ̃ (t; (0, ω̃∗0); 0)

)

− {U, h}
(
φ̃
(
t; (0, ω̃+

0 ); 0
)))

dt+O(ερ1) (6.4.47)

− U(ω̃+) + U(z̃+) (6.4.48)

+ U(ω̃∗)− U(z̃∗) (6.4.49)

for some ρ1 > 0.
As we did for Proposition 6.4.1, we now apply the fundamental theorem of calculus
between the points ω̃+ and z̃+ and ω̃∗ and z̃∗ to obtain expressions for (6.4.48) and (6.4.49).
Denoting z̃+(0) = z̃+(θ, v, s; 0) and z̃∗(0) = z̃∗(θ, v, s; 0) we have that

U(ω̃+)− U(z̃+) = ε

∫ Πs(z̃+)−Πs(ω̃+)=θ+t+1

0

{U, h}
(
φ̃
(
t; (0, ω̃+); ε

))
dt

= ε

∫ θα(v)

0

{U, h}
(
φ̃
(
t; (0, ω̃+

0 )
))

+O(ε2)

U(ω̃∗)− U(z̃∗) = −ε
∫ Πs(z̃∗)−Πs(ω̃∗)=θ+t+1 +τ ′

0

{U, h}
(
φ̃ (t; (0, ω̃∗); ε)

)
dt

= −ε
∫ θα(v)

0

{U, h}
(
φ̃ (t; (0, ω̃∗0); 0)

)
dt+O(ε2).

Then, using that

φ̃(t+ θα(v); (0, ω̃+
0 ); 0) = φ̃(t; z̃+(θ, v, s; 0); 0)

φ̃(t+ θα(v); (0, ω̃∗0); 0) = φ̃(t; z̃∗(θ, v, s; 0); 0),
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we can concatenate all integrals to obtain

∆U+ = ε

∫ ∞

−θα(v)

(
{U, h}

(
φ̃ (t; z̃∗(θ, v, s; 0); 0)

)

− {U, h}
(
φ̃
(
t; z̃+(θ, v, s; 0); 0

)))
dt+O(ερ1)

+ ε

∫ −θα(v)

0

{U, h}
(
φ̃
(
t; z̃+(θ, v, s; 0)

))
+O(ε2)

− ε
∫ 0

−θα(v)

{U, h}
(
φ̃ (t; z̃∗(θ, v, s; 0); 0)

)
dt+O(ε2)

= ε

∫ +∞

0

(
{U, h}

(
φ̃ (t; z̃∗(θ, v, s; 0); 0)

)
dt

− {U, h}
(
φ̃
(
t; z̃+(θ, v, s; 0); 0

)))
dt+O(ερ1 ln

1

ε
)

= ε

∫ +∞

0

(
{U, h}

(
(φU (θα(v) + t; 0, v) , σup(t− ζ̄), s+ t)

)

− {U, h}
(
φU(θα(v) + t; 0, v), Q+, s+ t

) )
dt+O(ε1+ρ1).

Finally, proceeding similarly for ∆−, expression (6.4.35) becomes

U(z̃+)− U(z̃−) = ε

∫ 0

−∞

(
{U, h}

(
(φU (θα(v) + t; 0, v) , σup(t− ζ̄), s+ t)

)

− {U, h}
(
φU(θα(v) + t; 0, v), Q−, s+ t

) )
dt

+ ε

∫ +∞

0

(
{U, h}

(
(φU (θα(v) + t; 0, v) , σup(t− ζ̄), s+ t)

)

− {U, h}
(
φU(θα(v) + t; 0, v), Q+, s+ t

) )
dt

+O(ε1+ρ2),

for some ρ2 > 0.

Proof. Of Lemma 6.4.1
Let

z̃n,+ = (0, ω̃n,+) =
(
0, vn,+ε , xn,+ε , yn,+ε , sn,+ε

)

z̃n,+0 = (0, ω̃n,+0 ) =
(
0, vn,+0 , xn,+0 , yn,+0 , sn,+0

)

be the impact sequences associated with the points

ω̃+ = G+
ε (v, s) ∈ Γ̃+

ε

ω̃+
0 = G+

0 (v, s) ∈ Γ̃+
0 .
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We first write

∆(t) :=
∣∣∣φ̃(t; (0, ω̃+); ε)− φ̃(t; (0, ω̃+

0 ); 0)
∣∣∣

=
∣∣∣φ̃(t− sn,+ε + s+; z̃n,+; ε)− φ̃(t− sn,+0 + s+

0 ; z̃n,+0 ; 0)
∣∣∣ .

Proceeding as in the proof of Proposition 6.4.2, we define

an = min
(
sn,+ε − s+, sn,+0 − s+

0

)

bn = max
(
sn,+ε − s+, sn,+0 − s+

0

)
.

Letting Fε be the piecewise defined field associated with the perturbed system (6.2.14),
and applying the fundamental theorem of calculus and we get

∆(t) ≤
∣∣z̃n,+ − ω̃n,+0

∣∣

+

∫ bn

an

∣∣∣Fε
(
φ̃
(
t− sn,+ε ; z̃n,+; ε

))
−F0

(
φ̃
(
t− sn,+0 + s+

0 ; z̃n,+0 ; 0
))∣∣∣ dt

+

∫ an+1

bn

∣∣∣Fε
(
φ̃
(
t− sn,+ε ; z̃n,+; ε

))
−F0

(
φ̃
(
t− sn,+0 + s+

0 ; z̃n,+0 ; 0
))∣∣∣ dt

+

∫ bn+1

an+1

∣∣∣Fε
(
φ̃
(
t− sn,+ε ; z̃n,+; ε

))
−F0

(
φ̃
(
t− sn,+0 + s+

0 ; z̃n,+0 ; 0
))∣∣∣ dt,

For the first and third integral, as both flows do not belong to the same domain S± ×
S± × TT , the fields do not fulfill that Fε → F0 as ε → 0. However, their difference is
bounded by some K1 > 0 and we can hence bound the integrands by this constant.
For the middle integral, both flows are located at the same domains and the fields Fε and
F0 are ε-close. Hence, there exists a constant K > 0 such that

∆(t) ≤
∣∣z̃n,+ − z̃n,+0

∣∣
+K1(bn − an)

+

∫ an+1

bn

K
∣∣∣φ̃
(
t; z̃n,+; ε

)
− φ̃

(
t; z̃n,+0 ; 0

)∣∣∣ dt

+K1(an+1 − bn+1).

Using that
P±ε (ω̃n−1,+)− P±0 (ω̃n−1,+

0 ) = O(ε),

and therefore
sn,+ε − sn,+0 = O(ε),

we have that there exists K2 > 0 sucht that

K1(bn − an) +K1(an+1 − bn+1) = K2nε.
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Hence, if t ∈ [an, bn+1], we have

∆(t) ≤
∣∣z̃n,+ − z̃n,+0

∣∣+K2nε+

∫ an+1

bn

K∆(r)dr.

We now want to bound
∣∣z̃n,+ − z̃n,+0

∣∣. Hence, we write

∣∣z̃n,+ − z̃n,+0

∣∣ =
∣∣ω̃n,+ − ω̃n,+0

∣∣
=
∣∣P±ε (ω̃n−1,+)− P±0 (ω̃n−1,+

0 )
∣∣

=
∣∣∣P±ε (ω̃n−1,+)− P±0 (ω̃n−1,+)

+ P±0 (ω̃n−1,+)− P±0 (ω̃n−1,+
0 )

∣∣∣,

where we apply P+
ε or P−ε and P+

0 or P−0 depending on the sign of Πv(ω̃
n−1,+) and

Πv(ω̃
n−1,+
0 ), respectively.

Using that P±ε and P±0 are ε-close and that P±0 are Lipschitz maps, it comes that there
exists positive constants c, KP0 and c0 such that, for n = 1,

∣∣∣P±ε (ω̃0,+)− P±0 (ω̃0,+) + P±0 (ω̃0,+)− P±0 (ω̃0,+
0 )
∣∣∣

≤ cε+KP0

∣∣ω̃0,+ − ω̃0,+
0

∣∣ = cε+KP0c0ε.

By induction we obtain

∣∣z̃n,+ − z̃n,+0

∣∣ = cε+KP0

∣∣ω̃n−1,+ − ω̃n−1,+
0

∣∣
≤ cε+KP0

(
cε+ kP0

∣∣ω̃n−2,+ − ω̃n−2,+
0

∣∣)

≤ cε

n−1∑

i=0

(KP0)
i + (KP0)

n c0ε

= cε
1− (KP0)

n−1

1−KP0

+ (KP0)
n c0ε

≤M (KP0)
n ε,

for some M > 0. Note that we do not necessary have that |KP0| < 1.
We now apply the Gronwall’s inequality to the expression

∆(t) ≤M (KP0)
n ε+K2nε+

∫ an+1

bn

K∆(r)dr.

Noting that
an+1 − bn = K3 + nK4ε,
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with K3 = max(α+(v), α−(−v)) and K4 > 0, this finally gives us

∆(t) ≤ (M (KP0)
n ε+K2nε) e

K3+nK4ε

≤M2 (KP0)
n εeK3+nK4ε

= M2εe
K3+n(K4ε+lnKP0

)

< M2εe
K3+n lnK5 ,

for some postive K5 and M2.
Taking n = c2 ln 1

ε
and making c2 small enough such that c2 lnK5 < 1, which is indepen-

dent from ε, we finally have

∣∣∣φ̃(t; (0, ω̃+); ε)− φ̃(t; (0, ω̃+
0 ); 0)

∣∣∣ ≤M2e
K3ε

(
1

ε

)c2(lnK5

≤M2e
K3ερ,

for some ρ > 0, which is what we wanted to prove.

6.5 Example: two linked rocking blocks

In this section we apply some of the results presented in this chapter to a mechanical
example consisting of the coupling of two rocking blocks by means of a spring (see Fig.6.5).
Following §5.5, we call αi the angle formed by the lateral side and the diagonal of each
block. We then take as state variables u and x such that α1u and α2x are the angles
formed by the vertical line and the lateral side of each block. As shown in §5.5, when
assuming that both blocks are slender (αi << 1), the dynamics of each are modeled by
the piecewise Hamiltonian systems

U(u, v) =





v2

2
− u2

2
+ u, if u ≥ 0

v2

2
− u2

2
− u, if u < 0

and

X(x, y) =





y2

2
− x2

2
+ x, if x ≥ 0

y2

2
− x2

2
− x, if x < 0

Recalling that both Hamiltonians U and X have the same phase portrait explained in §5.2,
we note that both Hamiltonians satisfy the conditions, C.1–C.4, stated in §6.2. That is,
each system has two critical points at (±1, 0), and there exist two heteroclinic connections
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α2x

α2
R1

R2

Figure 6.5: Two rocking blocks linked by a spring.

connecting them, which are given by the level of energy U(u, v) = 1
2

and X(x, y) = 1
2
.

Moreover, these heteroclinic connections surround a region filled with a continuum of
period orbits, which are given by U(u, v) = c and X(x, y) = c, with 0 < c < 1

2
.

We now assume that both blocks have the same dimensions (α1 = α2 and R1 = R2).
This allows us to assume that the angle formed by the spring and the horizontal line is
small, and hence to linearize the coupling around β = 0. Taking into account the external
small T -periodic forcing given by δf(t), the (linearized) equations that govern the system
in the extended phase space are

u̇ =v

v̇ =u− sgn(u)

+ k(u− x)− δf(t)

ẋ =y

ẏ =x− sgn(x)

+ k(u− x)

ṡ =1,

(6.5.1)
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This provides in fact a “Hamiltonian” system through the piecewise-defined Hamiltonian

H(u, v, x, y, s) =
v2

2
− u

2
+ |u|+ y2

2
− x

2
+ |x|+ δxf(t)

+ k
(u2

2
+
x2

2
− ux

)
,

(6.5.2)

with u = 0 and x = 0 as switching manifolds.
In order to apply the methods presented in this chapter, we need to obtain the coupled
and perturbed systems as a perturbation of the uncoupled one. Hence, we assume that
the constant of the spring is small and introduce the reparametrization

δ = δ̃ε, k = k̃ε.

This allows us to rewrite the Hamiltonian (6.5.2) in the form given in (6.2.13) as

Hε(u, v, x, y, s) = U(u, v) +X(x, y) + εh(u, x, s) (6.5.3)

where h is the Hamiltonian perturbation

h(u, x, s) = δ̃uf(t) + k̃
(u2

2
+
x2

2
− ux

)
. (6.5.4)

We now focus on the periodic orbits of the block 1 (Λc = {U(u, v) = c}) and the het-
eroclinic connection for the second block (γ) when ε = 0. This exactly reproduces the
situation described in this chapter, and hence we can apply the results provided so far.
On one hand, for ε = 0, the cross product of the critical points Q± = (±1, 0) and the
periodic orbits Λc gives rise to two 3-dimensional invariant manifolds in the extended
phase space2,

Λ̃±0 =
{

(φU(τ ; 0, v),±1, 0, s) ∈ R4 × TT ,
√

2c1 ≤ v ≤
√

2c2, 0 ≤ τ ≤ α(v)
}
,

where TT = R\T and φU(τ ; 0, v) is the (piecewise-defined) solution of the system associ-
ated with the Hamiltonian U(u, v) fulfilling φU(0; 0, v) = (0, v),

φU(τ ; 0, v) =





(
v − 1

2
eτ − v + 1

2
e−τ + 1,

v − 1

2
eτ +

v + 1

2
e−τ
)

if 0 ≤ τ ≤ α+(v)

(
− v − 1

2
eτ−α

+(v) +
v + 1

2
e−τ+α+(v) − 1,

− v − 1

2
eτ−α

+(v) − v + 1

2
e−τ+α+(v)

)
if τα+(v) ≤ τ ≤ α(v),

2To simplify the notation, we will use in this section the parameter τ ∈ [0, α(v)] instead of the
parameter θ ∈ [0, 1], which was used in the previous sections to parametrize the manifolds Λ̃±

ε . Both are
related by τ = θα(v).
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and α+(v) and α(v) are given in Eq. (5.5.11),

α+(v) = 2

∫ 1−
√

1−v2

0

1√
v2 + u2 − 2u

du =

= 2 ln

(
1 + u

1− u

)

α(v) = 2α+(v).

Both manifolds Λ̃±0 are connected by two heteroclinic invariant manifolds, an “upper” one,
W s(Λ̃+

0 ) = W u(Λ̃−0 ), and a “lower” one, W u(Λ̃+
0 ) = W s(Λ̃−0 ). The “upper” heteroclinic

connection of the system associated with the Hamiltonian X(x, y) is given by,

γup = {(x, y)σup(ξ), ξ ∈ R} ,

with

σup(ξ) =

{
(1− e−ξ, e−ξ) if ξ ≥ 0

(eξ − 1, eξ) if ξ < 0.

}

Hence, the “upper” heteroclinic manifold W s(Λ̃+
0 ) = W u(Λ̃−0 ) becomes

γ̃up =

{
(u, v,x, y, s) ∈ R4 × TT | c1 ≤ U(u, v) ≤ c2,

(x, y) = σup(ξ), ξ ∈ R

}
.

From Proposition 6.3.1 we know that the manifolds Λ̃±0 persist for ε > 0 small enough, and
become some 3-dimensional manifolds, Λ̃±ε , ε-close to Λ̃±0 . We now study the persistence
of heteroclinic connections between these manifolds. This is given in Proposition 6.4.1
by means of the existence of simple zeros of the Melnikov-like function defined in (6.4.2),
which depends on the Poisson bracket between the Hamiltonian X and the Hamiltonian
perturbation, h. As an example, we take the periodic forcing

f(t) = cos(ωt),

with ω = 2π
T

. With this perturbation, the Melnikov function defined in (6.4.2) becomes

ζ 7−→M(ζ, τ, v, s),

with

M(ζ, τ, v, s) :=

∫ ∞

−∞

(
−y(t)(δ̃ cos(ωs) + k̃(x(t)− u(t)))

)
dt, (6.5.5)
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Figure 6.6: Melnikov-like function given in (6.5.5) for v = 0.7. (a) τ = s = 0 and (b)
τ = 1.1.

(x(t), y(t)) = σ(t) and u(t) = Πu(φU(τ + t; 0, v)).
In Fig. 6.6(a) we show the result of numerically computing this integral for v = 0.7,
τ = s = 0. Note that it possesses simple zeros and hence, from Proposition 6.4.1, we have
that, if ε > 0 is small enough, there exist heteroclinic points of the form

z̃∗0(τ, v, s) =
(
φU(τ + ζ̄ +O(ε); 0, v), 0, 1 +O(ε), s+ ζ̄ +O(ε)

)
,

where ζ̄ is a simple zero of (6.5.5).
As explained in §6.4.2, the points, z̃± ∈ Λ̃±ε associated by the heteroclinic connections
going through z̃∗0 define the scattering map. Moreover, these two points may belong to tori
in the manifolds Λ̃±ε with different associated level of energy. This is determined by the
difference ∆U given in (6.4.35), whose first order term in ε is given by the Melnikov-like
function defined in (6.4.34).
As an example, suppose that we are interested on finding trajectories with increasing
energy. Hence, we want to find proper values of (τ, v, s) such that some zero of the
associated Melnikov-like function (6.5.5) leads to a heteroclinic connections with such
property. In order to find such values, we consider the function

τ 7−→ ∆U1(τ, v, s),



170 6.5. EXAMPLE: TWO LINKED ROCKING BLOCKS

−0.1

0

0

0.5 1.5

0.1

−0.3

−0.2

0.2

0.3

1 2 2.5 3

τ

∆U1

Figure 6.7: Function ∆U1 for v = 0.7 and s = 0. ζ̄ has been set to the first positive zero
of the respective Melnikov function (6.5.5).

where ∆U1 is the first order term of ∆U and is given in (6.4.34), which we recall here

∆U1 =

∫ 0

−∞

(
{U, h}

(
(φU (τ + t; 0, v) , σup(t− ζ̄), s+ t)

)

− {U, h}
(
φU(τ + t; 0, v), Q−, s+ t

) )
dt

+

∫ +∞

0

(
{U, h}

(
(φU (τ + t; 0, v) , σup(t− ζ̄), s+ t)

)

− {U, h}
(
φU(τ + t; 0, v), Q+, s+ t

) )
dt.

Note that, in order to compute this function, we have to fix a zero of the Melnikov func-
tion which, at the same time, also depends on (τ, v, s).
In Fig. 6.7 we show the function ∆U1 for v = 0.7 and s = 0, varying τ and numerically
finding the first positive zero of the Melnikov function. Note that it has a (positive)
maximum around τ = 1.1. This means that the first simple zero of the Melnikov func-
tion (6.5.5) with τ = 1.1, v = 0.7 and s = 0 leads to a heteroclinic trajectory with
increasing energy in the coordinates (u, v). For τ = 1.1, v = 0.7 and s = 0, the Melnikov
function (6.5.5) possesses a simple zero around ζ = 0.7 (see Fig. 6.6(b)).

Let us hence focus on the first positive zero, around ζ = 0.7 for τ = 1.1, v = 0.7 and
s = 0. We then apply a numerical method to find the heteroclinic point z̃∗0 . It basically
consists of, for a fixed ε > 0 small, applying a Bolzano’s method the find a zero of the
function

ζ 7−→ z̃u(ζ, τ, v, s)− z̃s(ζ, τ, v, s), (6.5.6)
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where

z̃u = (φU(τ + ζ; 0, v), 0, yu, s+ ζ)

z̃s = (φU(τ + ζ; 0, v), 0, ys, s+ ζ)

are the intersection of the unstable and stable manifolds W u(Λ̃−ε ) and W s(Λ̃+
ε ) with the

line
Ñ = {z̃0 + l(0, 1, 0, 0, 0), l ∈ R} ⊂ R2 × Σ× TT ,

with
z̃0 = (φU(τ + ζ; 0, v), 0, 1, s+ ζ)).

Hence, the main difficulty remains on finding the values yu and ys for each ζ. To
find ys, we numerically integrate the system for a set of initial conditions of the form
(φU(τ + ζ; 0, v), 0, yi, s + ζ), where yi surround a ε-neighbourhood of the unperturbed
heteroclinic intersection (1 ± O(ε)). As the heteroclinic manifold splits the space, we
distinguish between values of yi which lead to trajectories located “outside” and “inside”
the heteroclinic manifold. We then identify the closest values to the heteroclinic manifold
of these two types of points and repeat the process reducing the initial neighbourhood to
the one given by these two values. This is repeated until this distance reaches a certain
tolerance, and we identify ys with the most inner value. We proceed similarly integrating
backwards to obtain yu.

To compensate the numerical error produced by expansion given by the unstable
manifold when integrating forwards (by the stable one when backwards), we have used
a multiple precision library (arprec) allowing us to obtain the points ys,u with high pre-
cision. This has allowed us to use tolerance for the points ys,u of 10−21. Moreover, in
order to reduce the calculation time, the processes to integrate the system for each set of
initial conditions have been launched in parallel. This has been done in a heterogeneous
network, using a total of 108 parallel processes (54 for each ys and yu).

Choosing ε = 0.1, after performing the Bolzano’s method to find a zero of the func-
tion (6.5.6) using a tolerance of 10−20 we obtain

ζ∗ = .7683636328526994941193923,

which leads to

z̃∗0 = (φU(1.1 + ζ∗; 0, 0.7), 0, ys ' yu, 0 + ζ∗)

= (−0.0849537161540264040157446,−0.5721098684521409990382415,

0, 0.9780675560897323276693921, 0.7683636328526994941193923). (6.5.7)

The condition ys ' yu comes from the fact that ζ∗ is a zero of the function (6.5.6), which
precisely makes z̃∗0 a heteroclinic point.
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Figure 6.8: Heteroclinic trajectory with initial condition z̃∗0 given in (6.5.7) for ε = 0.1,
integrating backwards and forwards in time. In (a) the x− y coordinates, in (b) the u− v
ones.

In Fig. 6.8 we show the projections to the x − y and u − v planes of the heteroclinic
trajectory obtained when integrating backwards and forwards in time the flow with the
initial condition given in (6.5.7). In Fig. 6.8(a) note that, when integrating for t ≥ 0
and t < 0, the trajectory rolls about Λ̃+

ε and Λ̃+
ε , respectively, during a certain time until

they escape. In Fig. 6.9 we show the result of evaluating the Hamiltonian U along the
trajectory φ(t; z̃∗0 ; ε). Approximately, the trajectory no longer rolls about the manifolds
Λ̃±ε at the times given by the vertical dashed lines. As one can see, the energy evaluated
with the Hamiltonian U when the trajectory rolls about Λ̃+

ε is large than when it does
about Λ̃−ε , as we wanted to show.

6.6 Conclusions

In this chapter we have considered the coupling of two of the systems obtained by a
generalization of the model of the rocking block, presented in Chapter 5, under a small
non-autonomous periodic forcing. This leads to a two and a half degrees of freedom
piecewise-defined Hamiltonian system with two switching manifolds.
We have focused on the mode of movement given by small amplitude rocking for one block
while the other one follows large oscillations of small frequency. This mode is captured
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Figure 6.9: U(φ(t; z̃∗0 ; ε)) with ε = 0.1. The vertical dashed lines approximately correspond
to the times where the trajectory no longer rolls about the manifolds Λ̃±ε and escapes.
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by 3-dimensional invariant manifolds with stable and unstable manifolds. In the unper-
turbed case, these stable and unstable manifolds coincide, hence leading to the existence
of two 4-dimensional heteroclinic manifolds connecting the two invariant manifolds. This
heteroclinic manifold is foliated by heteroclinic connections between C0 tori located at
same levels of energy in both invariant manifolds.
By means of an extension of the impact map presented in Chapter 5, we have proved the
persistence of these objects when considering the perturbation. In addition, we have pro-
vided sufficient conditions of the existence of transversal heteroclinic intersections through
the existence of simple zeros of Melnikov-like functions. This becomes thus an extension
of some of the results given in [DdlLS06].
These heteroclinic manifolds allow us to define the so-called scattering map, which links
asymptotic dynamics in the invariant manifolds through heteroclinic connections. First
order properties of this map provide sufficient conditions to show that these asymptotic
dynamics are located in different energy levels in the perturbed invariant manifolds. This
is hence an essential tool in order to construct a heteroclinic skeleton which, when fol-
lowed, can lead to the existence of Arnold diffusion: trajectories that, in large time scale
destabilize the system by further accumulating energy.

Future work should be done to study the viability of a shadowing lemma in order to
show the existence of trajectories following the heteroclinic skeleton.
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[AL89] Ll. Alsedà and J. Llibre. Kneading theory of lorenz maps. Dynamical systems
and ergodic theory, 23:83–89, 1989.
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